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Preface

My purpose of study was to examine the non-rotating

planet assumption for three-dimensional Earth atmospheric

entry. Having worked in the area of hypersonic vehicle

performance analysis for the Air Force Flight Dynamics

Laboratory, I have become familiar with a variety of

atmospheric entry analysis methods. It is obvious that the

Earth's rotation needs to be accounted for in general entry

studies. However, I was curious to see if trajectory states

existed where the non-rotating planet equations of motion

were equivalent to the rotating planet equations of motion.

This thesis is the result of this curiosity.

I am deeply indebted to my faculty advisor, Capt.

Rodney Bain, for his enthusiastic assistance, his patience,

and for the many hours of instruction on perturbation theory

he generously gave me. I thank Dr. L. E. Miller, formerly

of the Air Force Flight Dynamics Laboratory, for his

assistance, encouragement, and unique outlook. Special

thanks is also owed to Dr. N. X. Vinh for his outstanding

works in analytical flight mechanics that I heavily utilized

in this paper and in the course of my Air Force civilian

career. Finally, gratitude is expressed to my understanding r - -

fiancee, Susan, and my family and friends, who gave me

motivational support throughout my AFIT experience.

* Harry Karasopoulos
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Notation

Roman Letter Symbols

a - Acceleration (ft/s
2)

B - Ballistic coefficient

C D  Drag coefficient

CL  - Lift coefficient

D - Drag (lb)

Acceleration of gravity (ft/s)

9 Gravitational acceleration at the planet's
surface (ft/s)

h - Non-dimensional altitude

I - Orbital inclination (deg, rad)

L - Lift (lb)

L/D- Lift-to-drag ratio

M - Mach number

m - Vehicle mass (lb)

q - Cosine of the flight path angle

r - Radius from center of planet (ft)

r* - Planetary radius (ft)

S Aerodynamic reference area (ft2 )

t Time (s)

u Speed ratio, a modified Chapman variable

V - Velocity (ft/s2)

y - Altitude (ft)

ix
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Greek Letter Symbols

a - Longitude of the ascending node (deg, rad)

P - Inverse atmospheric scale height (l/ft)

y - Flight path angle (deg, rad)

- Small parameter

- Small parameter

2 - Small parameter

0 - Longitude (deg, rad)

- Planet graviational parameter (ft3 / s 2)

- Magnified non-dimensional altitude

p - Density (lb m/f t 3 )

a - Bank angle (deg, rad)

O - Latitude (deg, rad)

* - Heading angle (deg, rad)

w - Planet rotation rate (deg/s, rad/s)

0 - Argument of latitude at epoch (deg, rad)

0 - Angular velocity (deg/s, rad/s)

Subscripts

* - At the surface of the planet

Superscripts

i - Inner

c - Composite

0 - Outer

x



- .Time derivative

Unit direction vector

Unit direction vector
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Abstract

The assumption of a non-rotating planet, common in most

analytical entry trajectory analyses, has been shown to

produce significant errors in some solutions for the lifting

atmospheric entry of Earth. This thesis presents an

investigation of the validity of the non-rotating planet

assumption for general three-dimensional Earth atmospheric

entry.

In this effort, the three-dimensional equations of

motion for lifting atmospheric entry are expanded to include

'a. a rotating planet model. A strictly exponential atmosphere,

rotating at the same rate as the planet, is assumed with

density as a function of radial distance from the planet's

surface. Solutions are developed for the non-rotating Earth

equations of motion and for one of the rotating Earth

equations of motion using the method of matched asymptotic

expansions.

It is shown that the non-rotating Earth assumption

produces incorrect entry trajectory results for entry

orbital inclination angles between 0.5 and 75.0 degrees and

vehicle speeds ranging from circular orbital velocities to

low supersonic speeds. However, a variety of realistic

trajectory states exist where some of the non-rotating Earth

xii
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equations of motion are valid. Three of the non-rotating

equations of motion are found to be valid for the same entry

trajectory states. Other, independent trajectory states

exist where a fourth non-rotating Earth equation of motion

is valid. A fifth equation of motion is never valid for the

ranges of orbital inclination angle and speeds investigated.

Trends in the results of the trajectory states of validity

are discussed and methods to estimate some of these states

are presented.

xiii
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INVESTIGATION OF THE VALIDITY OF THE

NON-ROTATING PLANET ASSUMPTION FOR

THREE-DIMENSIONAL EARTH ATMOSPHERIC ENTRY

I. Introduction

Analytical studies often have the advantage of

displaying valuable solution trends, giving more insight to

the problem and its solutions than corresponding numerical

work. Simple and accurate analytical methods to find

solutions to the equations of motion for high speed flight

vehicles supplement more complex and unwieldy numerical

methods. In past analytical work on lifting atmospheric

entry, the limiting assumptions of planar entry and a non-
I.

rotating planet were common. The equations of motion for

planar atmospheric entry of a non-rotating planet are highly

nonlinear; adding rotating planet and non-planar effects to

the equations of motion make them even more difficult to

solve analytically. Hence, the current literature has no

investigations which analytically solves the equations of

motion for three-dimensional, lifting atmospheric entry of a

rotating planet.

The Non-Rotating Planet Assumption

Although common in most analytical entry trajectory

analyses, the assumption of a non-rotating planet model can

produce significant errors in trajectory results. Since

* ~1I



most planets have a significant rotation rate, the rotating

planet assumption will give more accurate entry vehicle

performance results, especially for lifting vehicle range

and time of flight calculations. Inherent in the concept of

a rotating planet for atmospheric entry is the assumption

that the planet's atmosphere rotates with the planet at a

constant rate. This assumption is more accurate than the

non-rotating planet/atmosphere assumption but is still not

ideal. The atmosphere of a rotating planet can be viewed as

a boundary layer with rotation rates which change with

altitude. Near the planet's surface the atmosphere rotates

at about the same rate as the planet. As altitude

increases, the atmosphere rotates with a decreasing rate,

and at high altitudes this rate is near zero. Hence, the
.-

true effect of a rotating atmosphere is therefore bounded on

one end by the non-rotating planet solutions and on the

other end by the rotating planet solutions. In this study

is is assumed that the rotating planet solutions are ideally

valid.

The maximum effect of the rotating atmosphere (Chapman,

1959:5) on a flight vehicle is easily calculated for a

spherical planet. This maximum occurs at the equator for

minimum altitude and is given by the ratio of the planet's

angular velocity to the circular orbital velocity at the

planet's surface. The planet's rotational velocity on the

equator is given by

*2



V = wr

where w is the planet's rotation rate and r* is the radius

of the planet. The circular orbital velocity at the surface

of the planet is

Vc = (g~r*)1/2

where g* is the gravitational acceleration at the surface of

the planet. The ratio is given by

V r  
[w2r]1/2

cr [ J

This ratio gives an indication of the possible error

introduced to velocity calculations for a non-rotating

planet model. For Earth, this ratio is approximately 0.06

For Mars, Jupiter, Saturn, and Venus, this ratio is

approximately 0.07, 0.30, 0.40, and 0.0, respectively (Vinh

and others, 1980:3). Hence, for near-equatorial atmospheric

entry, the maximum velocity error is negligible for Venus,

significant for Earth and Mars, and very large for Jupiter

and Saturn. The velocity error associated with the non-

rotating planet assumption causes an even larger error in

the calculation of aerodynamic forces. Since lift and drag

are proportional to the square of velocity (as seen in

Section II), the error introduced to the aerodynamic force

calculations can be a maximum of about 0.14, 0.12, 0.60, and

0.80, for Mars, Earth, Jupiter, and Saturn, respectively.

3
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A recent study of AOTV (Aero-assisted Orbital Transfer

.4% Vehicles) trajectories about Earth investigated possible

trajectory simulation error due to the non-rotating planet

assumption. In this study it was found that the non-

rotating planet model caused velocity errors which gave

dynamic pressure differences ranging up to 10 - 14%

These differences may cause underprediction of the final

altitude and overprediction of the attainable orbital

inclination change in a non-rotating Earth analysis. It was

concluded that rotating Earth effects must be included for

realistic AOTV trajectory simulation (Ikawa, 1986:1,9).

Another recent study (Miller, 1986:14) noted significant

errors in values of range and time of flight for equilibrium

glide entry trajectories when the Earth's rotation was

neglected. Differences in trajectory results between the

rotating and non-rotating cases were found to be

significant, especially for trajectories beginning at speeds

greater than 15,000 ft/s.

Vinh (Vinh and others, 1980:3) argues that inclusion of

a rotating atmosphere into an analytical entry study would

cause unwarranted overcomplication to the problem, possibly

overshadowing the advantages of an analytical versus

numerical analysis. However, for many atmospheric entry

trajectories, such as multiple pass aerobraking, synergistic

orbital plane change, and general high L/D vehicle

trajectories with shallow entry flight paths, trends in the

*: solutions caused by the rotating planet and its atmosphere

4



may be important. For these types of trajectories, the

error in the calculation of the aerodynamic forces is more

prominent due to the relatively large flight times within

the sensible atmosphere.

Problem

Because of their complexity, the equations of motion for

three-dimensional, lifting atmospheric entry of a rotating I
planet have not been analytically solved. However, the

assumption of a non-rotating planet, common in most

analytical entry analyses, has been shown to produce

significant errors in some solutions for the lifting

atmospheric entry of Earth. An investigation of the general

validity of the non-rotating planet assumption for three-

dimensional Earth atmospheric entry is needed. In addition,

the existence of trajectory states where the rotating planet

terms in the equations of motion are negligible should be I
investigated. This would indicate the existence of

trajectory states where existing solutions to the non-

rotating equations of motion are valid for Earth lifting

atmospheric entry.

Scope

In this effort, the three-dimensional exact equations of I
motion for lifting atmospheric entry are expanded to include

a rotating planet model. The rotating planet terms in the

equations of motion for Earth atmospheric entry are I
examined. Solutions are developed for the non-rotating

% 
-A,1
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equations of motion and for one of the rotating Earth

,i. "equations of motion. This was accomplished by treating

atmospheric entry as a boundary layer problem, and applying

method of directly matched asymptotic expansions. A variety

of realistic Earth entry trajectory states are shown to

exist where some of the non-rotating equations of motion are

valid for a rotating Earth. This validity is coordinate

dependent since sigularities exist in the equations of

motion. Entry trajectory state examination is limited to

orbital inclination angles between 0.5 and 75.0 degrees,

where most Earth atmospheric entry occurs, and vehicle

speeds ranging from circular orbital velocity to low

., supersonic speeds where terminal maneuvers, such as landing

approaches, are usually initiated.

Assumptions

The planet is modelled in this analysis by a sphere

having a central gravitational force field obeying the

inverse square law. A strictly exponential atmosphere,

rotating at the same rate as the planet, is assumed with

density as a function of radial distance from the planet's

surface. In this effort, the only forces acting on the

lifting vehicle are assumed to be gravity, lift, and drag;

magnetic, solar wind, and other forces are considered

negligible. The lifting entry vehicle is modelled as a

point mass in a three degrees-of-freedom analysis. Constant

lift-to-drag ratio is assumed along the trajectory and a

6
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* , a - - 6 -i . -- . - t- -.

ballistic coefficient is specified for each flight

vehicle/atmosphere under study. Angle of attack was not

explicitly modelled. More detailed discussion of the

approximations and assumptions will be presented in Section

III.

%Approach

In Section II, the equations of motion for three-

dimensional lifting entry for a spherical, rotating planet

,11~are derived. In Section III these equations of motion are

transformed into a form more convenient to examine and

solve. The equations are also made non-dimensional and a

coordinate transformation is undertaken. In Section IV the

rotating planet terms in each of the five equations of

motion are examined. These terms then are set equal to zero

and checked for the existence of real solutions. It is

shown that three of the equations of motion have identical I
solutions for these rotating terms. It is also shown that

real solutions do not exist for the rotating terms in one of

the equations of motion. The solution to the equation of

motion containing these rotating terms is developed in

Section V along with the solutions to the non-rotating Earth

equations of motion. These solutions are derived from the

rotating Earth equations of motion using the method of

matched asymptotic expansions. In Section VI, the solutions

to the rotating term equations in the other four equations

c of motion are examined in more detail. Trajectory states

7



are presented where some of the non-rotating Earth equations

of motion are independently valid for a rotating Earth.

Methods are given to estimate solutions where four of the

non-rotating equations of motion are valid for rotating

Earth entry. Conclusions and recommendations for further

study are presented in Section VII.

*
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II. Derivation of the Equations of Motion

In this section, the equations of motion are derived for

three-dimensional lifting entry of a rotating planet. A

spherical, rotating planet model is employed and it is

assumed that the atmosphere rotates at the same rate as the

planet with rotation rate, w. The lifting entry vehicle is

modelled as a point mass in a three degrees-of-freedom

analysis. Gravity, lift, and drag are assumed to be the

only forces acting on the vehicle; magnetic, solar wind, and

other forces are assumed to be negligable. Further

discussion of assumptions and approximations is presented in

Section III.

Coordinate Systems

Figure 1 defines the planet centered coordinate systems

used in this analysis. The planet's inertial reference

frame has coordinates X, Y, and Z, with unit vectors I, J,

and K, respectively. The X and Y axes lie in the planet's

equatorial plane and the planet rotates about the Z axis.

The rotating planet-fixed coordinate system has axes Xo, Y0,

and Z0 , with unit vectors I0, JO, and K0 , respectively.

Another view of the planet centered coordinate systems is

illustrated in Figure 2. i is a unit vector in the XY

plane, pointing radially away from the planet. 0 is defined

0%.
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\O I0

YO 0

Figure 2. Coordinate Systems Revisited

-p. as the longitude and is measured from the X0 axis which

rotates about the K direction with rate w. * is latitude

and is measured positive from the equator to the pole in the

Ko direction. y is the flight path angle and is measured

"positive up" from the local horizontal to the velocity

vector. The heading angle, , is measured from a constant
.A-;



R%

Zo , KO

:S.

Figure 3. Heading Angle Definition

latitude line to the projection of the velocity vector onto

* the sphere, positive towards the K direction (Figure 3).

The vehicle has mass, m, and is at a radius, r from

the center of the planet. Figure 4 presents the vehicle

centered coordinate system.

Kinematic Equations of Motion

In order to develop the equations of motion, we first

look at the velocity and acceleration equations for rotating

12
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systems. The velocity of the vehicle with respect to the

inertial frame, X, Y, Z, is defined as the sum of the

velocity of the vehicle with respect to the rotating frame

and the cross product of the angular velocity of the

rotating frame and the radius vector.

d' 4r d~ 4r
IJK dt IJK 1dt r

=+ X ' (2.10)

where r is the radius vector, extending from the planet's

center to the flight vehicle, is the velocity vector, and

is the angular velocity of the rotating frame.

The inertial acceleration, a, is defined as the

derivative of the inertial velocity.

-+1 dd 2  + x dI- a .. .+ X r+ d6 -

2IJK d TJK dt2 1]kdt dt r

dt

This can be simplified to the following

S +26x + xr

+f lx [ x ;] (2.12)

14
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=~~~~~I A. a a- --- 1 -

where

a__ is the acceleration of the vehicle with respectIJx

to the inertial planet centered coordinate

system.

a is the acceleration of the vehicle with respect

to the radius vector.

is the angular velocity of the rotating frame. For

a point mass vehicle in flight over a rotating

planet, f is equal to a constant, the planet's

rotation rate, w

2i x r is the Coriolis acceleration.

3. 1

6 x 6 x is the Centripetal or Transport

acceleration.

To apply Eq (2.12) in the derivation of the equations of

motion, transformations between the various coordinate

systems are required. The coordinate transformation from

the inertial system, XYZ, to the vehicle centered system,

xyz, is not difficult but is prone to algebraic error

because of the many intermediate steps and variables

involved. For ease in derivation, this transformation of

coordinate systems is divided into a number of simple angle

rotations.

15



Ist Rotation, Inertial to Rotating. The first rotation

is the planet rotation about the Z axis. The rotation angle

at time t is wt. From Figure 1 it can be seen that the

following expressions apply:

Io = Icoswt + Jsinwt

Jo = -Isinwt + Jcoswt

Ko = K

In matrix form

oc coswt sinwt 0

3o] -sinwt coswt 0 1 (2.1)
a-0 Ko0  0 0 1 K

and

0I coswt -sinwt 0 ] 1
0

J sinwt coswt 0 o (2.2)

K0 0 1 o

2nd Rotation, Longitude. The second rotation (Figure 5)

is a longitude angle rotation about the Z axis:

a= Icoso + Josin6 and =-Iosin + Jocose

3rd Rotation, Latitude. The third rotation is a

latitude angle rotation about the y axis. From Figure 6

' = icoso + K0 sino and = -asin# + K0 coso

The results from the longitude and latitude rotations are

16
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combined and presented below:

1 cosocosO cososinO sino I0
-sinO coso 0 J0 (2.3)

-cossino -sin~sin# cos( K)

and

I0 -cosocosO -sine sinocosG

J0  -sinOcoso cosO sinosin6 (2.4)KoJ sino 0 cosO j

At this point enough information is known to make

coordinate transformations between the XYZ inertial frame

and the rotating xyz vehicle point mass frame. However, the

transformation between the xyz and the x0Y0 zo frames is

*" required. Figure 4 presented the vehicle centered

coordinate systems that are used in the equations of motion.

6 is a unit vector that is used to make the intermediate

coordinate transformations easier to follow.

4th Rotation, Heading Angle. The fourth rotation is a

heading angle rotation about the x axis. From Figure 7

S= cos# + lsin# and 0 jsin# + kcos#

5th Rotation, Flight Path Angle. The fifth rotation is

a flight path angle rotation about the z axis. It can be

seen from Figure 8 that

isi4.
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1 10 = 1COS7 - 6sin7 and 3o= isin7 + Lcos'y

The results from the heading angle and flight path angle

rotations are combined and presented below:

;' 0 Cos7 -sin 7 cos# -sin7sin# I

J sin cos7cos cos7sin# ] (2.5)

k 0 0 -sin# I
and

I cosOcosO -siny 0 10
= sin7cos# cos~coso sin# jo (2.6)

sin7sinf -cos7sino cos# o ]
* Combining all five rotations gives the relations for a

complete coordinate transformation between the x 0y~zo and

XYZ systems.

o cosy -sin7coso -sinysinf cosOcosO cososinO sino4 sin 7  cos7coso cos7sino -sinO cosO 0
0.k 0 -sino cosO -cos~sino -sin~sino cosoJ,

coswt sinwt 0 1

-sinwt coswt 0 1 (2.7)

0 0 1

and

20
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0

Zo 0' 0o

Figure 9. Bank Angle Rotation

coswt -sinwt 0 cosocose -sinO sinocosO
' c][ -sin~coso cose sinosinO
K 0 0 t -sino 0 cosO

%
r%

Icosocos9 -siny 0 1.0

sinycos# coo7cos# sin# 30 (2.8)

sin'ysin# -cosYsin* COsB# [ko

The only other coordinate transformation relation that

requires consideration at this point is the rotation to

allow for banked flight. Defining a as bank angle in Figure

9 gives the following relation:

c = x0coso + fo Gina (2.9)

21I
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V, where a is a unit vector in the direction of the lift force.

From Figure 6 it can be seen that aerodynamic lift acts

in the c direction, drag acts in the -3 direction and the

vehicle's velocity vector points in the +] direction.

Hence, lift is given by

LC = (Lcosa)'0+ (Lsinu) 0  (2.13)

From Eqs (2.9) and (2.5)

= Lcosa[cos7 I - sin7cosf' - sin7sink]

+ Lsin [-sinob + coso]

L(cosacos7 )* - L(cosusincoso + sinusino)3

+ L(sinacoso - cosasin7sino)k (2.14)

The drag components are found in terms of the vehicle

centered unit vectors by application of Eq (2.6):

= -D30 = -D(sin7)II - D(coscoso)3 - D(cos7sino)k (2.15)

The vehicle's local or relative velocity with respect to its

own reference frame is

= V(sin7) + V(cos7cos#)3 + V(cos7 sino)k (2.16)

The planet's rotation needs to be accounted for to

obtain the vehicle's inertial velocity from Eqn (2.16). A

velocity component due to the planet's rotation is added to
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the vehicle's local velocity to form the inertial vehicle I
velocity. The planet's rotation velocity component is a '

function of latitude; at the equator this velocity component

has its maximum value and at the poles it is zero.

Vehicle's Inertial Velocity = ~-
IJK

Velocity component due to planet rotation = r

Vehicle's local velocity =

+ r (2.17)IJK 1 r,

V= Vr - wrcosoj (2.18)
r r

Combining Eqs (2.16), (2.17), and (2.18) gives an expression

for the inertial velocity of the flight vehicle.

V1 - V(sin7)1i + V(cosycoso + wrcoso)3

+ V(cossino)k (2.19)

Another expression for inertial velocity can be derived

from Eq (2.10) and compared to Eq (2.19) to produce three of

the equations of motion.

4 dd4

IJK dt IJK dt i k r :

In this equation i is the vector sum of two rotation

rates between three coordinate systems, the XYZ, X0 Y0 Z0 , and

23



xyz systems. Therefore, 0 is the sum of the angular

velocity of the rotating planet frame about the inertial

frame and the angular velocity of the vehicle centered

reference frame about the rotating planet frame. This can

be expressed by

XYZ-4Xo0Z0 + IX0 Y0 Zo 0 -xyz

From Figure 1

= + = + 0 - dt

and with Eqn (2.4)

dO dO[ sin - cos-+w (2.20) I
Since r =r

d - dr-t  d i  dr-..1
a- j-dt' at 3rd

V.I

and -r r W r dtcos + (.1
' ~ dt] dt

Hence, the second equation for inertial velocity in terms of

the vehicle centered reference frame coordinates is

+ rcoso(w + (2.22)
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Q Three kinematic equations of motion are derived by

equating the two inertial velocity expressions, Eqs (2.19)

and (2.22), and comparing like terms.

dt. dt d

, + V(cos~coso + wrcoso)' + V(cos~sino)k

:. Kinematic Equations of Motion.

dr
:terms: dt Vsin-y (2.23)

dt cs

% do Vcos~sco
fterms: at - ros (2.25)

SDerivation of the Force Equations of Motion

To derive additional equations of motion, the inertial

acceleration is calculated. From Eq (2.12)

Each of the four terms in the above equation is derived

• separably for clarity.

Thre1st Acceleration Term. a

ki dt k
nFrom Eqs (2.21) and (2.23)

+ Vsin=V~sn 7l

r ddt

25
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Therefore ai= sndt Vco87a] + (2.26)

2nd Acceleration Term. 26 x r

From Eqs (2.20)

dt~ dt3  dt- I
and from above

%dr,

r-- dt Vsin71

Taking twice the value of the cross product of these two

equations gives the second inertial acceleration term.

2i5x [Vsi~co~(w+ ! -)]+ [2Vsiny ] (2.27)

3rd Acceleration Term. 6 x r

Taking the time derivative of Eq (2.20) gives

[= + d]cos0dtX + -d2sinol + + in

dt 2  dt 2

- .+ dO] + + + cos¢- -
dtt dt 2  +dtj dt

Rewritten

26
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LW dti C5dt dt 2  J d t 2

+ !-coso-Iw +-i0sin& " k (2.28)

Therefore, the third term of Eq (2.12) is

Srr d 20coso - rsinodt +t r4!lk (229
dt2 [ w + - j dt 2  ( - 9

"1 4th Acceleration Term. x x r

Taking the cross product of Eqs (2.20) and (2.21) gives

x r = r[w + -L]coso3 + r-t

e" Taking another cross product produces the fourth inertial

acceleration term.

lx Mx r - r[nw + ceCs 2 + rt1i] dt2

A t w + 4-] sino , + r w + - s o 2

'".'

Total Inertial Acceleration. Combining Eqs (2.26),

(2.27), (2.29), and (2.30) gives the total inertial

acceleration in terms of the vehicle centered direction unit

vectors.

5%°

sBin +VCB-4 - r[w t]co2 4t'

IJ Ttv +t dc 7 + d2

27
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+ 2Vin~osow +Adt + r -cos - 2w +- 13in

1 SlfldO t[ dt] rndtJ

[ dol2 2
+ r t + i-l sinocoso + + 2Vsi (2.31)

dt 2  it]

This equation can be simplified by substitution of the

three kinematic equations of motion that were previously

derived, Eqs (2.23), (2.24), and (2.25). Because of the

size of this new equation, each direction component of the

inertial acceleration, Eq (2.31), is examined separably

below.

Srth Inertial Acceleration Component. The Ith term of Eq

(2.31) is

F dV 2d 2, Ith= sinyT- + VcosT-2 - + -Cos dt

Substituting in for !LO- and d_ with Eqs (2.24) and (2.25)
dt dt s (

T dV W2 VcoVcosscosOd 2

Ith = sntV + VCO - 2 cos - 2wr1  rYcos cos 2

r 2  r cos - rV2 cos 2 yTsin2

cos r

This can be simplified to

th= ind- + -rCOS74 O20

in7~ Vos dt r cos - 2wVcos7cos#coso

w 2 rcos2 0 (2.32)
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3th Inertial Acceleration Component. The 5th term of Eq

J 9th -2Vsinvcoso wri -i + r dOco dt I sdt~] 1e +e A-0d
I.dt' - t ]

Subtittin infor~- d d roue
dt

Vos~cosO

5th = 2wVsin7coso + IVi~os cs

rcos4- Vcos7cost] 2 wrsino Vcossint]

- . Vcosjsi Vos'icos]

This equation simplifies to the following expression:

5th d vcos~cos] rcoso + 2wVsin7coso + 23 in7cosocos#

V2  2
-2wVsinocos 7 sin# - 2- !tano Cos 'ysinfcos#

The first term of this equation is

drVcos~ycoso] rcs do~osV - sncOA
dt [ crcoso s dctco~ Vsncsdt

Vcossin#it V067 os :*0-r - rsin&t]gie

dt r2os.co~ Coss dV d -

dtVo~c rcos o cos7cos#!-j - Vsin7cos#A2 Vcoa7sin#At

5'5' Ics t t
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2 V2
- -'sin 7 cos7 cos# + -cos 2 cossinftano

Therefore, the entire 5th term of Eq (2.31) is

J Ith = cOs7cos#4- - Vsin7cos#42 - VcOs7sin#4t

+ 2wV[sincoso - sinocossin#]

+ r c2 s.cOs#C1sin 7 - cos7sin~tano] (2.33)

th Inertial Acceleration Component. The th term of Eq

(2.31) is

q" kth = r4 + 2Vsin74 + r w + sincos

dt I dt sincoso

The first term in this kth component requires some

manipulation. Differentiating Eq (2.25) and multiplying by

r gives

2 d VcosjsinO ] ,dV Vsin sinrd  r- = -cosisinsi-

dt 2  dt r dt dt

V2
+ Vcos7cost - rsinycos7sin# (2.34)

Substituting Eqs (2.34), (2.23), and (2.24) into the kth

term produces

- V2 c2s2 -/o 2 s n

kth = 2 V"sin7cos7sin# + w 2 rsinocoso + Cos Ycos 2sino
r rcosl

+ 2wVcos'cos#sino + cosdsn#-V Vsinsin#4

SVdt

0,3
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~' ~V* v+ Vcos-ycosou-t - -- sin 7 cos7sinok

This equation can be simplified to the following expression:

fct = 2  2 dVI
kh r - cosy7cycO tano + sinysino) + cos~ysinoajt

-Vsin-ysino 12 + VcosycosOj- + 2wVcos7cos ~sino

+wrsinocoso (2.35)

Total Inertial Acceleration. Adding together the

ith, 5th, and fth acceleration terms given by Eqs (2.32),I

(2.33), and (2.35) gives an expression for the total

inertial acceleration on the vehicle.

*aK ~ s dV y-- + VO-4 - 2wVcosjcospcosO - Cos2 -y

-
2 ro2~ 1 [cos7cosO-V- - VsincosO42 Vcos'~sin#At

a, + 2V(cososiny sinocos~ysino)

+p r- sicoscoss~(sin -

+ [cossin#4-v + Vcos~ycos#4- (2.36)j

-Vsin~sin#42 + 2wVsinocosycos#[. + W2 rsinocoso + 3cos'y(sin'ysin# + Cos2 #tanocosY)]1k
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Another equation for inertial acceleration can be

derived by examining the forces on the vehicle. It is

assumed that the only forces acting on the vehicle are

gravity and aerodynamic lift and drag.

Therefore a --- = E -  (2.37)
mI JK

~d ( + (238)and a .. . dt --- m t +6 + 9
IJK IJK

where the gravitational force, g, is a function of r and

acts in the negative radial direction.

g = -g(r)I (2.39)

Lift and drag are given by Eqs (2.14) and (2.15):
'S

= (Lcosucos7)i - (Lcosusin7coso + Lsinusino)3

- (Lcososin7sino - Lsinacoso)c

= (-Dsin7)' - (Dcosycos#)3 - (Dcos'sino),

With substitution, a second equation is found for the total

inertial, acceleration of the vehicle:

4[ oFL D D

L Lcossin cos L D
-[Lcosasin /sn + miasn Dco-sOin] .

-cosasln7sin# sinacos# + m (2.40)
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By setting the two different equations for inertial

acceleration equal and comparing like terms, three

additional equations of motion can be derived. Equating Eqs

(2.40) and (2.35) produces the following expressions:

i Direction Term.

s dVy-t co-- - 2wVcos-ycos~coso - 2Vco - w2 rcos2
51~~+ csdt r

- (Lcosacosy - Dsiny) -g (2.41)

3Direction Term.

os dV -sny cstn~

CO7~ Vindt Vcstndt

2Vw V 2
+ (cososin7-sinocos7 sino) + - cosy (sin7-sinocos7tano)coso r

- (Lcosusin7 + Lsinatan# + Dcos7 )3' (2.42)

k~ Direction Term.

dO74V + 1cos'Y 4" - sinocos7 2 sinocoso
dotj Vtn dt sina# in

t 2 ostaocs

+r -COS7fsiny + ostan~os-

1 sing
--- (Lcosasiny - L- + Dcosy) (2.43)M tan#i

These three coupled equations can be reduced by someI

manipulation. Multiplying Eq (2.43) by -1 and adding the

* product to Eq (2.42) gives

Vcos7tan#dt + 2 (cososiny - siflocos7sifo)

dt -O
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__Cos sinocos7
vCO5 [sif cos7tano] - 2wrtan# dt tan#

2 sinocoso V2  
______

w Sino [costan~cos7 ]
si-n - r L tano

- L intan L sinu
- tm tano

By combining terms and noting the trigonometric

identities

1 + tan # = (cos 2 ) - l and sin 2 + cos 2  = 1

the above expression can be rewritten to form a new equation

of motion:

" -t L sinor
" L .. co.. + 2Vw(cosotansino - sino)

[-, m cos cs] V cst

"[sincscs1 -COS (2.44)
- L COS- r

Substituting Eq (2.44) back into Eq (2.43) produces

0 =d V V i 4 2 2

0 cosT + 2Vwcososincoso - Vsin 7 t + -cos7sin7

cL osuD 2 I
a, + --- co7 + ( rsinocososino (2.45)

Multiplying Eq (2.41) by -sn and adding this

product to Eq (2.45) gives another equation of motion:

V~d--J [nsY 2 .o[ Cos-Yin
0 1 sin7 + sin7 + rCOS i7 + sin 7

+ -koso sin 7 4 csY] °- g + 2Vwcosocoso sin 71sin 7
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* - + ?5]+ W 2 rcososinosin# + coso c 6]

Rewritten,

V2+ L
*dt = r 'CO57 mcoso - gcos7 + 2Vwcosocos#

+ w 2 rcosolsinosinfsin7 + cosocos7] (2.46)

Substituting Eq (2.46) into Eq (2.42) produces the last

equation of motion:

0 = sinyift + Vr 27o + L 1-8 - gcos2 7 + 2Vcos7cosocosf

+ w 2 rcosycoso Icosocos7 - sinosin~sin7]I

-2wVcos'yo7 cs - co 2O 7 - w 2rcos 2 L OScos7Y

+ si7+ g
dm

This can be rewritten

dV - m gsin7 + w rcoso[cososiny sinosin~cos7l (2.48)

The Equations of Motion

In summary, the following six equations of motion for

three-dimensional atmospheric entry for a rotating planet

have been derived and are listed below for convenience.

dV D gsin7 + w rcosorcososiny sinosin~cos7l (2.49)
dt m
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VV--=V L .I,

d-t r COs 7 + mcos - gcos7 + 2Vwcosocoso

+ w2 rcosoIsinosinosin7 + cosocos] (2.50)

Vd -'o- + 2Vw[cosotan7 sino - sino]

w 2r[nooo - -"cscs#tan (2.51)

dr Vsin- (2.52)

dO Vcos coso (2.53)dt - rcoso

d- VcosjsinO (254)
dt r

In the next section, these equations of motion are

0 transformed into a form more convenient to analyze.

3I
'p]
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III. Approximations and Manipulation

of the Equations of Motion

The equations of motion for three-dimensional

atmospheric entry for a rotating spherical planet were

derived in Section II. In this section, assumptions and

approximations used in this thesis are defined and

discussed. In addition, the equations of motion are

transformed into a form more convenient to examine and solve

in later sections. The independent variable is changed from

time to non-dimensional altitude, h, and the equations of

motion are transformed into non-dimensional form by the

introduction of non-dimensional variables. A coordinate

* system transformation is undertaken to utilize variables

which are more convenient for atmospheric entry analysis.

The equations of motion derived in Section II are

given by

dV =-D - sn ~ 2
-gsin + w rcoso(cososin 7 - sinosinocos7) (3.1)dt - m

d- V 2 L
dt - + -cos - gcos7 + 2Vwcosocoso

2+ w rcosO(sin~sin#sin7 + cosocos7) (3.2)

V-V L. sina V 2

dtmcos: - 'cos7cosftano + 2Vw(cosotan7sin# - sin#)

w2 rsinocosocost (3.3)

S37
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tdr _Vsin (3.4)
dt-Sil

dO Vcos'coso (35)
dt - rcos(

d_ =Vcos'sino (3.6)dt - r

Note that the equations of motion for three-dimensional,

non-rotating planetary entry can be derived from the

rotating equations simply by setting the planet rotation

rate, w, to zero. The equations of motion for the non-

rotating planet assumption are therefore

dV _ D gsin7 (3.7)

Lt I
dt -'o + coso - gcos(.

V dd_ L .sinq V2

= m cos - cos7costano (3.9)

dr Vsin-y (3.10)
dt -

dO Vcosycoso (3.11)
dt rcos(

do VcosjsinO (3.12)
dt r

As expected, comparison of Eqs (3.1) - (3.6) and Eqs

(3.7) - (3.12) shows that the equations of motion are

significantly more complicated when the earth's rotation is

accounted for.
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A few more variables require definition at this point.

Let y be altitude and r * be average planetary equatorial

radius. Since r is the radius measured from the center of

the spherical planet to the flight vehicle, h is defined as

the non-dimensional altitude and is given by

h = y - (3.13)
r

where

r = r.+ y = r.+ hr = r.(l+h) (3.14)

dr
Therefore, dh r (3.15)

dt dr/dh r*
and dh dr/dt = Vsin 7  (3.16)

.5h

*These relations will be used in the approximations discussed

on the following pages.

Assumptions and Approximations

The rotating planet assumption and the errors associated

with the non-rotating approximation were discussed in

Section I. Further assumptions and approximations are

presented below.

Spherical Planet Assumption. The approximation of an

oblate planet by a sphere is very common in analytical

flight mechanics analyses and is used here. It is a

reasonable assumption for planets having small ellipticity

such as Earth, Venus, and Mars but may not be as reasonable

for planets such as Jupiter and Saturn which have relatively
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large equatorial bulges and ellipticities a magnitude

greater than Earth's (Chapman, 1958:2). For either case,

error introduced by the spherical planet approximation is

generally small for near equatorial entry trajectories.

Spherical Atmosphere Assumption. The spherical planet

approximation leads to the assumption that the atmosphere is

spherically symmetric about the planet. In reality, planets

are oblate spheroids causing their atmospheres to also have

an oblate form. In addition, other significant deviations

from the spherical model occur. A diurnal density bulge

occurs over part of Earth's sunlit side due to solar

heating. Solar storms and fluctuations in a planet's

magnetic field can cause significant changes in density for

a given altitude (Wiesel, 1986:66-69). However, since these

* effects generally occur at altitudes where aerodynamic

forces are minimal (and inclusion of more sophisticated

density models may introduce overcomplication of the entry

problem) these effects are generally assumed to be

negligable. The approximation of a spherical planetary

atmosphere is perhaps the most limiting assumption to the

atmospheric model. This approximation is better for the

Terrestial planets, with their slow rotation rates, than for

the large, outer planets (Duncan, 1962:276).

Gravitational Model. The spherical planet approximation

also leads to the assumption of an inverse squareI gravitational field. This is given by
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2

g = g) = (3.17)
*2 2 V
r (l+h)

where g is the gravitational acceleration at the planet

surface.

Atmospheric Density Model. As previously discussed, the

planet's atmosphere is assumed to be spherical and to rotate

with the planet with a constant rotation rate, w. The

planet atmosphere is mathematically modelled by an

exponential atmosphere with the inverse atmospheric scale

height, P. This is a very common atmospheric model that has

been successfully utilized in many studies on planetary

atmospheric entry. Atmospheric density, p, is given by

(Chapman, 1959:4)

- ldr (3.18)P

It is sometimes assumed that the product of the inverse

of the atmospheric scale height and the vehicle's distance

from the planet's center is constant for a given atmosphere.

With this model

dp= _ dr or p = p.(r/r)-r (3.19)p r

where p. is the density at the surface of the planet.

The product Pr has been approximated for many of the

planet atmospheres. It has values on the order of 1000 for

most of the planets; the mean value of Pr is approximately

41

.%=%".%, %',%".'...%..".-.... . -... .. . %-..%.. . *,.-. .... A - A. .%%%%" % .%%'



S

900 and 350 for Earth and Mars, respectively (Vinh and

others, 1980:5).

For this study a strictly exponential atmospheric model

is employed where the the inverse atmospheric scale height

is assumed to be constant. This approximation allows the

atmospheric density equation to be written in the form

p = pe- peh/E (3.20)

where E is a small number given by

1 (3.21)

5Note that P is dependent on what planet is studied; for

Earth, the average scale height is about 7.1 kilometers

(Vinh and others, 1980:5) or about 23,300 feet.
S

For planetary atmospheric entry, r is approximately

equal to r*. This is an accurate approximation because the

thickness of an atmosphere is generally very small compared

to the planet's radius. For example, the upper altitude

limit of Earth's sensible atmosphere is often taken to be

350,000 feet. This value is only about 1.7% of the Earth's

radius. Approximating r by r leads to

1 1
Pr. - Pr

and hence the values given in the literature for mean

planetary Pr are considered equivalent to Pr. E is

therefore a very small number (approximately equal to 1/900
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for Earth) allowing it to be utilized as a small parameter

in the asymptotic expansions of Section V. Earth

atmospheric density values were calculated with this model

and plotted in Figure 10 with values obtained from the 1976

U.S. Standard Atmosphere (NOAA, 1976:Table IV). Comparison

of these results shows that the accuracy of the exponential

density model is reasonable for Earth with a constant value

for Pr of 900.

Aerodynamic Forces and the Ballistic Coefficient. Lift

and drag accelerations are given by the following familiar

expressions:

Y2

L PSV CL D PSV2 CD
m 2m and m 2m (3.22)

where m is the mass, S is the aerodynamic reference area, V
S

is the velocity, CL is the lift coefficient, and CD is the

coefficient of drag for the flight vehicle.

The non-dimensional ballistic coefficient, B, is defined

to help place the equations of motion into a form easier to

solve. It is given by

p SCD
B - (3.23)

2mI

and is specified for each flight vehicle under

consideration. The ballistic coefficient is a function of

the vehicle's physical characteristics and the planet

atmosphere and is considered to be a constant (Busemann and

others, 1976:18).
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The Speed Ratio. A non-dimensional variable is

introduced to place the equations of motion into a more

manageable form. This variable is the speed ratio, u, which

is a Modified Chapman Variable used in many flight mechanics

analyses. The dimensionless Chapman variable, u, was

utilized as the independent variable in the equations of

motion in early analytical work on planetary entry. This

variable was given by (Chapman, 1959:7)

- Vcosy(gr) '/2

In later work (Buseman and others, 1976:11-13) it was

found that u is periodic at high altitude, and that other

dimensionless variables served better as the independent

- variable in the equations of motion. However, the Modified

Chapman Variable, u, was found convenient to use in the

derivation and analysis of the equations for planetary

entry. For brevity, this Modified Chapman Variable is

termed the "speed ratio", and is defined as the local

horizontal component of the vehicle's velocity (in the xyz

reference frame) divided by the square of the circular

orbital velocity.

F:Vs2 ( +h)V2 cOs2 ' (324)

gr g r

This equation can be rewritten as:
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Differentiating Eq (3.18) with respect to h gives

du 2V(l+h)cos2 7. dV
dh g~r. dh

2V (1+h)cos~ysin'y., V Cos 2y (3.26)
g~r * dh + gr*

Substituting Eqs (3.20), (3.23), and (3.25) into Eq (3.22)

gives a non-dimensional equation for the aerodynamic drag

acceleration:

_ V2 M SCD e PBV2eh/

or

D ug*Bexp(-h/E)-- = (3.27)

m (l+h)cos 7

Likewise

L = D CL C L ug*Bexp(-h/E)

m m CD CD E(l+h)cos2  (3.28)

Changing the Independent Variable

The equations of motion for a rotating planet are now

rewritten using the expressions derived above. To change

the independent variable from time, t, to non-dimensional

altitude, h, the equations of motion are multiplied by Eq

(3.16). Direct substitution into the dV/dt equation gives

46

L,. ,, .'", . ," "'"€ , ," "" "" ," " """"" . ." . , ," ." ,," ," - " ," ,, , , " ." . " W 4 ,r.- - - - - . " . - - • .- . .
" " ." " -" % " ",5"% " ' -. ,S

%
.. ' .>. .4.*' 2 , % ' "

- .
' 5 '

*5( "-,
' ,

J% % d %'- ,% " -""
% '

.-



dV =-ug~r*Bexp(-h/e) [(l+h)] 1/ 9* 087 (1+h) 1/

'\dh E(l+h)cosysiny [ugr* (1+h ) 2  ug *rk_

(1+h (1-+-h) *cos~cos'y(cos~siny - sinosin~cos7)

This equation can be reduced to

dV Bexp(-h/ce) ugr 12 2

= - Ecos-ysin-y 1 /2) - ~h 3/2

2 [og.(1+h )3r 3 -1 /2
"Wtan~y [ug * J (cososin7 - sinosintocosy) (3.29)

Direct substitution into the d7y/dt equation givesI

d2 cos~j r CLug*Bexp(-h/E) *Cosa' r* (1+h)cos2 7

dh r*ah sin + Z7DiElhco y i-.u

g~cos-y r*(1+h)cos -y7scs 1h

(1+sh ) 2 snyug~ r* + wcos i ny r*cos 7yu~*

2 * 1~+h)coso 21hcs'
+ W si * l -(sinosino6sin7y + cos-Icoso'*(+) os r

S'This equation can be reduced to

42 1___ L. Bcoa -/ Cos2'
dh -(1-sh)tan-y + Esinye (1+h)utan-y

1 2w coso-hE _ __o

12
+2w J cossos_

2 g ran (1+h)insi + cos7coso) (3.30)% I



Direct substitution into the d#/dt equation, Eq (3.3), gives

B__ _ r_ __ _

d* CLug.exp(-h/E) sine r~cos2 7 (1+h) _cosycosotano

dh CD E(1+h)cos2 7 Cos7 sin7 Lurg*-J r*(1+h)sin7 *

2wr*cos7 (1+h) 1 1/2

sg * (cosotan7sino - sino)s in-y ug~r.

w2r(1+h)2sincos~cosO r*(l+h)cos2 7

cos-sin 7  ug r

This reduces to

do CL Be-h/%sina cos'cosotano + 2w [(1+h)r,*1/2

dh CD Ecos-sin7- (1+h)sin-y tan7 ug j

wr (l+h)2 sinocosocoso
•(cosotan-sino-sino) - ug~tan7 (3.31)

The dO/dt equation becomes

d" d - cost "• ,O (3.32)
dh (l+h)cosotan7 "

and the do/dt equation becomes

d- sino (3.33)
dh - (1+h)tanyI

The dr/dt equation is incorporated into the other

equations, reducing the number of equations of motion 
from

six to five. The du/dh equation also incorporates the dV/dh

equation. Combining Eqns (3.19) and (3.20) allows the du/dh

equation to be rewritten as

0
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du =2o7u( l+h 1/2 d ua7d
- 2os rgl* d h + -(l +h) -utndh

Substituting in for the dV/dh and d7 /dh terms using Eqs

(3.29) and (3.30) eliminates V and gives the du/dh equation

as a function of u.

du = u + u(l+h)l 1 [2-Bexp(-h/E)l ug *r * 1/

dh -(l+h) + OS 7 r J [cosysiny (l+h) J

-r 1/2 LlSO (+h )3 r] /2

(cososin7-sinosinpcos7)

1 2uanLi Bcosor -h/E Cos 2 -Y
[(1+atan D - sin (1l+h) utan-y

(1+h)r] COOCS
+ 2w ug tany

*ug tan'y

This rather formidable equation reduces to the following

*du -u 2 u~e h/ [1n' + o

4w [(*u] cosoicoso + 2w (1+h)2 -~cos7coso.
9* 9*

cos4osin'y sinosin~cos7
tan -an si1nsinoin cosoIcos7]

.. tan7ta
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The du/dh equation can be further reduced to

-' _ __ _ __ __C 1 +h u /2

du _ U 2uBe - 1 + 050*1os . 1h~r
dh (1+h) - siny I tan c 4w 9I

2(1+h )2 r * cososinosino 3.4

*cosocoso - 2w 2 _ " tany (3.34)

Another variable is introduced to simplify the equations

(Busemann and others, 1976:19).

let q = cos7 hence, dh -sin7dh (3.35)

Using these relationships, the d7 /dh equation can be

rewritten

dh-. ] C cosa- 2qwcosocoso i

CL Be+hh/u Drlh 11/2
wr (1+h) g c (sinosinotan7 + coso) (3.36)

- rq (lh)• s

The equations of motion for three-dimensional, rotating

planetary entry have now been transformed from Eqs (3.1)

(3.6) to the following:

du -u 2uBe CL  [(l+h)ur 1eh 1 + tancosa -dh = (l+h) - sin-y 11 D *j

(l+h )2 r cssnsn•cosOcos - 2w2 *(1+. (3.37)

9. tan7

C _/r:r r(1+h) 11/2
__dh q-q(+ CD e - co s a - 2qwcosocoso L ughJ
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-
2 rq 3 (1+h) • Cos(sinosinotan7 + coso) (3.38)

ug

L Be- sini cos'cos~tanO + 2w (l-h)r. 1/2
dh CD Ecossin7 (l+h)sin7 tafl7 ug J

2r (1+h)2 sinocosocos#
• (cosotan7sinf-sino) - ug~tan7 (3.39)

dO co (3.40)
dh - (l+h)cosotan7

d sino (3.41)
dh- (1+h)tan7

The Classical Orbit Variables

Up to this point, the equations of motion have been

presented as functions of latitude, longitude, heading

angle, and other variables. This form has been often

utilized for atmospheric trajectory simulation by numerical

integration. For ease in studying and in deriving solutions

in later sections, these equations are placed in terms of

the classical orbital elements, 0, I, and a. For a non-

rotating, spherical planet, these variables are constants of

motion for non-atmospheric flight. This characteristic

greatly simplifies the solution derivation for the non-

rotating planet case. I is defined as the orbital

inclination angle, n is the longitude of the ascending node,

and a is the argument of latitude at epoch. Basic spherical

trigonometric relations are found in Appendix A and these

relations are applied to transform the variables 0, @, and

5'



in terms of the orbital elements, a, 0, and I. Figures 11

and 12 show the geometry of the two sets of variables.

The following relations, derived in Appendix A, relate

0, 0, and #, and a, 0, and I.

sino = sinlsina (3.42)

cosl = cosOcosO (3.43)

=tanOsino tn (3.44)
tana

sin(-0) tan (3.45)sin8- ) -tanI

sino = sinlcos(e-0) (3.46)

Cosa = coscos(O-fl) (3.47)

Differentiating Eq (3.43) gives:

sinI"dl cososino'do + sinocoso"do

Therefore

dl cososinO.d + sincos#,d
dh sinl dh sinl dh

dl o A sin4t + sinocostsin# (3.48)
dh sinl dh sinltan7(l+h)

Substituting for do/dh, Eq (3.39), gives

dl CL cosasinaBe h/E cosacos'costtano
dh =CD Ecos7sin7 (l+h)sin 7

r.(1+h) /

+ 2w Csa (cosotan7sin# - sin#)ug ia.

2 .(l+h) 2  sin~coslsin'3.g
-wr 1h)cosasinocosocoso + iossnt(.9ug tanO cosO(l+h)tan7sinI
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The last term cancels with the second term and with

application of some of the spherical trigonometric

equations, Eqs (3.42) - (3.47), the dI/dh equation is

transformed from a function of 0, 0, and #, to a function of

a, 0, and I.

LcosasinB-h/E r (l+h) /2I L cossin e + 2w[ ] cosasinI. (3.50)dh - CD  Ecos~sin7  + w ug* tan-y

•(cosatan-y - sina) - w2 r (1+h)2 (sinIcosIcosasina)) ugtan7

To find an expression for da/dh in terms of the desired

variables, Eq (3.42) is differentiated.

d- cosIsina dI sinIcosa da
dh - coso dh coso dh

Substituting for do/dh with Eq (3.33) produces

da 1 tana dl (3.51)
dh (l+h)tan7 tanI dh

da 1 CL sinasinaBe
- h/E

dh (l+h)tan7 CD cos7sinytanI

4 [r1+h) 1/2

- 2 (+h) sinacosI tSsug tan o(cosatan-_ sina)

+ w2 r u1thnsin acos2 I (3.52)

To find an expression for dfQ/dh in terms of the desired

variables, Eq (3.46) is differentiated.

sino = sinlcos(O-n)
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cos#-d# = -sinlsin(9-f)4d-d(I] + coslcos(O-fl)-dI

By substituting in Eqs (3.32) and (3.45), this

expression can be rewritten as

dO cosltan, dfl cosItanO + coslcosa dI (3.53)I
dh - coso dh (l+h)tan7coso cos~coso dh

Rewriting Eq (3.48) gives another expression for do/dh:

-O sinl dI sinocoso (354)I
dh - cososin-#ab dh 1h~a-

Equating Eq (3.53) and Eq (3.54) gives dO)/dh as a function

of dI/dh.

dfl cos b cosItano sinocosocoso
dh cosItano (l+h)tan7coso (l+h)tan7y

dl r sinI coslcosa~i
dh [.cososinob cosobcosol

dfl _COSV cosItano cosIsino~

dh -cosItanotano(l+h)tano coso Cos2

dI coo[S-~ - cosocosa]
dh coslsino cosa

This simplifies to the following

dO tancr dI (3.55)
dh sinIdh

S. Eq (3.55) can be "de-simplified" by substituting Eq (3.50)

into this equation.

____ ____ __ 2 r (1/2
Ldil CL Beh/inasina 2w_____

dh =C D sin7cos7sinI tan7 y +)
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- [si. sta,- 
] .w.2.r. (.+h.) 2

i - acoslsin a (3.56)

."lnCO uan7 sinan

The du/dh equation, Eq (3.34), can easily be transformed

to the desired orbital variables by application of the

spherical trigonometric relations.

du u 2uB -h/e [ L. o tan
d[h (+h) ( i  1  D

[4wcosIu_ 2wr (l+h) cosasin Isina (3.57)
g * tany

The last equation of motion to be transformed is the

S2dq/dh equation, Eq (3.38). The w term of Eq (3.38) is

2 3 (l+h) 2  21]S-w r q ug cssnsnta7+cs0

0Z

'SThis term can be rewritten as

-wr 3(1+h) [cosasinasin Itan7 + 1 - sin Isin 2 a]

- wr~qug.

The dq/dh equation transformed into the orbital elements is

dq _q2 C L [re-lhh) 1/2

dh(l+h u - CD Cug j

w rq 3 (1+h) 2ug [sinacosatan7sin I + 1 - sin Isin2a] (3.58)

In summary, the equations of motion for three-

dimensional rotating planetary entry have been derived for

the independent variable, non-dimensional altitude, and some
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convenient dependent variables including orbital

inclination, longitude of the ascending node, and argument

of latitude at epoch. These equations are given below.

du =- u _2Bu -h/Fr C Lcsta]
dh (1+h) Esin7 D csray

- 4wcsi~u*(1+h]I/ 2 2 . (l+h) cosasin2 Isina (3 )
9* 9:tany

dq q q 2 L B- h/.. csa - 2qwcosI r*(l+h)]/

dh (1h)Lu C D]-cs ug*

- w2 r q 3 (1+h) 2 [sinacosatan7sin 2 1 + 1 - sin 2 1Isin2a] (3.60)
* ug*

dI C LcosasinaBe-h/E r r(l+h)_1/2
D 751~ + 2w

dh -C D cos~sn ug*

coiI (c osaItan - sina)

w 2 r ,(1+h) 2 (sncscssn)(3.61)*ug *tany(i~o~oaiQ

dh) = e / sinasina + 2w [ * l+h)]1/

h C D Esifl7cos7sinl tany ug]

2 )2
[sinacosatany - hi r*(l+h) -cs na (.2

- - ug *tan7

da 1 C L iainBeh/'

dh (1+h)tany 0D cos7 sin~tn

2w r*l~h) sinacosI (cosatan7 -sinO)
-
2 Wug ] tan'y
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+ 2 r*• (l+h) in 2  2 (3.63)
- ug*tan7 I

Singularities exist for these equations of motion for

flight path angle values of 0.0 and 90.0 degrees and for an

orbital inclination angle of 0.0 degrees. Special

consideration must be taken when evaluating Eqs (3.59) -

(3.63) near these values.I
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IV. Examination of the Rotating Planet Terms

%:

The rotating Earth terms in each of the equations of

motion are examined in this section. This examination is

conducted for orbital inclination angles ranging from 0.5 to

75.0 degrees and vehicle speeds ranging from circular

orbital velocity to low supersonic speeds, where terminal

maneuvers such as landing approaches are usually initiated.

The rotating Earth terms are set equal to zero for each

equation of motion and are then checked for the existance of

real solutions. The existance of real solutions for any of

these expressions indicates trajectory states (specific

combinations of values of u, h, q, I, 0, and a along an

entry trajectory) exist where that particular non-rotating

Earth equation of motion is valid. In a later section,

these trajectory states will be examined in more detail.

The non-existance of real solutions to the rotating Earth

%A terms in any one of the equations of motion indicates the

corresponding non-rotating equation of motion will be

invalid for any Earth entry trajectory. A solution that

accounts for the Earth's rotation is needed for any non-

rotating Earth equation of motion that is invalid for the

full range of inclination angle and speeds investigated.

These solutions are developed in Section V by application of

the method of matched asymptotic expansions.
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The Second Small Parameter

41 To begin, the equations of motion are placed in a more

convenient form to work with. In Section III, E was shown

to be approximately equal to the ratio of the atmospheric

scale height and the radius of the planet. A convenient

second small parameter is introduced to replace the w terms

in the equations of motion. This second small parameter is

defined as the square of the ratio of the planet's

rotational velocity at the equator and the prograde,

equatorial circular orbital velocity at the surface. The

orginal small parameter, E, is re-labelled E and the second

small parameter is labelled

2

iwand 2 *r)/ 2  = (4.1)

For Earth, E, = 1/900 and e2 = 1/289

The equations of motion for three-dimensional, rotating

planetary entry, derived in Section II, now become

du - u 2uBe- h/ [1 + L "tanycos]dh (1+h) E I sin7 L D

/2

4[ Eu(l+h)] /cos - 2r2 (l+h)2cos a sin Isina (4.2)
[2  c tany

- -_ ]_- L Be-hEcos(1h)
dh (l+h) 1 _ _ r: _ose_2q_2
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2 (l+h) " q(tanysinacosasin2 I + 1 - sin Isin a) (4.3)

da 1 CL" Be-h/ sinasina
dh - (1+h)tan7  C D E1  cos7sin7tanI

- 1h tans (cosatan7 - sina)

.2 2

+ E (l+h) 2 .sLn acos I (4.4)
2 utan7

d(I C L Be-h/E sinasina r(1~] /2_sindh-CD cssin'ysinI + 2 (cosatan7 -sina)

E (l+h) 2 sin acosI (4.5)2 utanj

dI C L Be h/E 1 *sinacosa + 2[E2 (1h 1 /2 cosasinl.dh CD E1  Cos7sin7 2 tan7

• (cosatan7 - sina) - e (lh) 'cosasinacos I sinI (4.6)
2 utan7

It was previously noted that the latter three of the

above equations are coupled:

d _ tana dI (4.7)dh -sinI dh

da 1 _ tana dI (4.8)
dh- (I+h)tan7 tanI dh

The Rotating Earth Terms

The equations of motion for lifting atmospheric entry

for a rotating Earth can be written as the sum of the

equations for a non-rotating Earth and of the terms that
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account for the Earth's rotation. The equations for a non-

rotating Earth are the terms in Eqs (4.2) - (4.6) which do

not contain E and hence are not a function of w. The non-

rotating Earth terms are referred to as the "Nonrotate

equations" and the rotating Earth terms in the equations of

motion are simply referred to as the "Rotate equation".

Speed Ratio Equation. The rotating Earth equation of

motion for speed ratio, given by Eq (4.2), can be rewritten

as

du

du =Nonrotate 
+ Rotate

where

du -u 2uBe-h/c CL
dhrtte (l+h) sin • [1 + D'tancosar]

dh Rotate k2

- 2.2 (l+h)2cosasin
2 Isina (4.9)2 tan 7

Flight Path Angle Equation. The rotating Earth

equation of motion for flight path angle, given by Eq (4.3),

can be rewritten as

dq = Nonrotate + Rotate
dh -

where
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., ,._,~~ .1. = _ q-1 LBe-h/E 1.cosor

dh jNonrotate (l+h)lu D h

q - 1/2 (4.10)
dh Rotate [E2 (iu±h)] c

- e2 (l+h)
2 "u-(tanysinacosasin I + 1 - sin Isin2 a)

2 U

Argument of Latitude at Epoch. The rotating Earth

equation of motion for argument of latitude at epoch, given

by Eq (4.4), can be rewritten as

- Nonrotate + Rotate
dh -

where

da 1 CL Be-h/E1  sinusina

dh Nonrotate - (1+h)tany CD  E cos7sin7tanI

da - [(1+h)]1 /2 sinacosI
aI Rotate 2 [E2 • sitanIy (cosatan7 - sina)

+ E (l+h)2 "sin acos 1 (4.11)
2 utan7

Longitude of the Ascending Node. The rotating Earth

a, equation of motion for longitude of the ascending node,

given by Eq (4.5), can be rewritten as

dO Nonrotate + Rotate
dh -

where
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~~.]

dO C - L Be h/E i sinasinz
, d-h Nonrotate D cos7sin7sinI

d2 (1+h) 1 /2 •___

d- Rotate [an7

- 2 (l+h)- sin aco s I
2 utan7 4.12)

Inclination Angle Equation. The rotating Earth equation

of motion for orbital inclination angle, given by Eq (4.6),

can be rewritten as

dh = Nonrotate + Rotate

where 

_ 

_____dI L Be-h/i .sincosa
dh Nonrotate CD E1 cS7Sin7

a -= R o a e [2 u Il h 1/ tasn

dIl tte [ 1+u ]/cosasn /sta7-sine)" tn

2 (l+h )2 cosasinacoslsinl (4.13)2 utan7

Investigation of Real Solutions to the Rotate Terms

Eqs (4.9) - (4.13) are the Rotate equations, those parts

of the complete equations of motion which account for the

rotating Earth. In the following pages, the five Rotate

equations are each set equal to zero and then examined for

the existence of real solutions. .I
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Rotate Term Solutions for the Speed Ratio Equation.

du 4 rE (lh) 1/2 coI- 2E (1lh )2cosasin 2 Isina

dh Rotate 2 tan-y

Setting this equation equal to zero and solving for one of

the five variables gives

= tan~~-O1cosasinasin2 1(.4

7Rotate = ta0 2cosl 4.4

where C = [(1+h) E]/ (4.15)

Substitution of a few realistic combinations of u, h, I,

and a indicate real solutions exist for Eq (4.14).

Rotate Term Solutions for the Inclination Angle

Equation. From Eq (4.13)

dI r (1+h)]1/ cosasinI
j oae2 [E 2  u J n- (cosatany -sina)

1h)2 cosasinacoslsinI
2 lh utany

Setting this equation equal to zero and substituting in EqI

(4.15) for C gives

1 C IC
2sn-os sina1 n- sinacosasinIcosI (4.16)

One Bet of trivial solutions to this equation is in the form

sinlcosa =0 for any C and 7
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The w term contribution to the dI/dh equation of motion is

therefore equal to zero when sinI and/or cosa = 0. However,

due to the fact the equations of motion are singular for

sinI = 0 as discussed in Section III, the trivial solution

is actually

cosa = 0 (a ... -37r/2, -7r/2, 7r/2, 37r/2, "

Nontrivial solutions to Eq (4.16) can be found by solving

for one of the five variables.

Ro etan - 1 sina + C co s I sina] (4.17)71Rotate = 0 2co-a

Substitution of a few realistic combinations of u, h, I, and

a indicate real solutions exist for Eq (4.17).

Rotate Term Solutions for the Argument of Latitude at

Epoch. From Eq (4.11)"|

/2
dRotate 2 1 ] sitan cosI(cosatan7 - sina)

2 sin a cos I
+ e (l+h) 2

2 utany

Setting this equation equal to zero and substituting in Eq

(4.15) for C gives

2sinacosI cosa tn-J itan n acos I2 (4.18)

One set of trivial solutions to this equation is in the form

sinacosI = 0 for any C and 7
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The w term contribution to the da/dh equation of motion is

'V hence equal to zero when sina and/or cosI are zero.

However, due to the range of inclination angle selected for

study, cosl is never equal to zero and the trivial solution

is

,sina = 0 (a . . . -27, -7, 0O, 7, 27, . .)-

* Nontrivial solutions to Eq (4.18) can be found by solving

for one of the five variables in this equation.

Ro e = tan-[ Ccoslsina sinin] (4.19)7 Rotate = 02cs

Substitution of a few realistic combinations of u, h, I, and

a indicate real solutions exist for Eq (4.19).

Rotate Term Solutions for the Longitude of the

Ascending Node. From Eq (4.12)

d] [ 1+h)" /2 sina
df = , nsia(cosatan7 - sina)

Rotate

S- 2 (a+h) cos2 utan7

Setting this equation equal to zero and substituting in Eq

(4.15) for C gives

2sina[ in (4.20)

One set of trivial solutions to this equation is in the form

sina 0 for any C, I, and 7
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Hence, the w term contribution to the da/dh equation of

motion is equal to zero for a .... -2w, -w, 0, w, 2w, ...

Nontrivial solutions to Eq (4.20) are in the form

l=tan-I [CcOslsina + sina (.1
[OcosI

7Rotate = 0 t s- in (4.21)

Substitution of a few realistic combinations of u, h, I, and

a indicate real solutions exist for Eq (4.21).

Coupling of Three Rotate Term Solutions. The non-

trivial solutions for the rotating term expressions are

identical for the da/dh, dD/dh, and dI/dh equations, Eqs

(4.17), (4.19), and (4.21). This can also be seen by noting

that the dI/dh, dO/dh, and da/dh equations are coupled by

Eqs (4.7) and (4.8).

dl tana dI (4.7)
dh - sinI dh

da 1 tana d4 - (4.8)
dh (l+h)tan7 tanl dh

These coupling relations can be written in terms of the

Nonrotate and Rotate expressions:

df_ tana dI + tn (4.22)
dh Nonrotat na*A--Ite - sinl dh tsnI Rotate

+ Rotate

da 1 tana dl
dh 1Nonrotate = (1+h)tan7 tanl dh Nonrotate

+ Rotate

tana.dl (4.23)
tanl d-h Rotate
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Since the Rotate terms contain w or E2 by definition, the

first term of Eq (4.23) must be a Nonrotate expression.

Hence,

d:- tanadl (4.24)

d Rotate tanI'd-hRotate

In addition

dl _ tana-dl (4.25)
dh Rotate sinI dh Rotate

From Eqs (4.7) and (4.8) it can be seen that the dO/dh

and da/dh equations differ significantly. However,

comparing like terms indicates

-a - sdf (4.26)
dh Rotate cs Rotate

These results simplify the search for the trajectory

states where the non-rotating Earth equations of motion are

valid. Instead of detailed examination of the non-trivial

solutions of all three of the da/dh, dO/dh, and dI/dh Rotate

equations, examination of only one of them is required. The

trivial solutions for rotating term expressions for the

dO/dh and da/dh Rotate equations are the same, sina = 0, and

the trivial solution for the rotating term expression for

the dI/dh Rotate equation is cosa = 0.

Rotate Term Solutions for the Flight Path Angle

Equation. From Eq (4.10)
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2q(1+h) I/2 1 I
- q cosI

dh Rotate 2U

2 (1+h) 2 "-(tansinacosa sin 2 1 + 1 - sin2 sin2 a)

Setting this equation equal to zero gives

0 = 2qA I cosI +q3 [tan sinacosasin 2 i + 1 - sin 2 I s i n 2 ]  (4.27)

where A 1 3 (4.28)

[A2 (l+h)j

Because singularities exist for I or 7 = 0.0 or 90.0

degrees, q = 0 can not be considered as a trivial

solution. To examine possible solutions to Eq (4.27), some

additional variables, Ai, are defined for convenience.

let A = 1 - sin2 Isin 2 a (4.29)

A3 = sinacosasin I (4.30)

A4 = 2A I cosI (4.31)

Using these variables, dividing by q, and remembering

q = cosy, equation Eq (4.27) can be rewritten

A4 + q 2A 3 tan 7 + qA2  0

A + A 2c s  = - A sinycos7  (4.32)
4 2 cs 3

Squaring this expression
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A 2  4 -+A 2 + 2A A2cos2 7  A32  2 2 I
(A 2 + A3 2 2 (2A4 A-2 A3 2) + A4 2 2=0 (4.33)

where v = q2 = cos 2 7 (4.34)

Eq (4.33) can be easily solved in the form

Ai/2 + Bv+ C0=0

where A=A 2 + A 32 B = 2A A2 - A3 2 C = A 2 andwhr 2 3' 42 3' 4'

Li -B * [B 2 _ ]IC 1/2

2A

The Rotate term solution for the flight path angle equation

is hence given by

-2AA +A 24 _ 4A AA 2  4A 2A2
42 2 2423 3 4 (4.35)

2A + 2A2 3

At this point v has been placed in terms of the

variables A , A , A , and A Looking at each of these
1 2 3 4

expressions individually aids in the determination of

general trends of the values of i,.

A Equation. It can be easily seen that A has a
-2 2

maximum value of 1.0 when sina = 0, for any value of sinI

a within the inclination range of interest, 0.5 < I < 75.0

degrees. A minimum of 0.0670 occurs for A2 when I = 75.0
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degrees and a = 90.0 degrees or 90.0 * 180.0 degrees.

Thus, A2 is never negative.

A Equation. A has a maximum value of 0.466 for-3 3

I = 75.0 degrees and a = 45.0 degrees. A minimum value of

-0.466 occurs when I = 75.0 degrees and a = -45.0 degrees.

A4 Equation. Since A is always positive, it can

be easily seen A4 has a maximum value of 34.0 for

I = 0.5 degrees, u = 1.0, and h = 0.0 A has a minimum of
4

0.0 for u = 0.0 .Minimum values of A 4for non-zero u occur

for I = 75 degrees. For a prograde orbit A is always
4

positive.

Solutions. For real solutions to exist in Eq

(4.35), and hence for the rotating terms in the dq/dh

equation to ever have a zero contribution, the expression

within the square root must be positive. Factoring A3 out

of the root expression in Eq (4.35) leaves the following

condition for the existence of real roots

A3
2 - 4[A2 A4 + A4 2] > 0 (4.36)

where A and A are always positive and A can be positive
2 4 3

or negative over the range of inclination angle examined.
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Eq (4.36) indicates real solutions to the dq/dh Rotate

equation do not exist for realistic entry trajectories

except for values of u corresponding to low speed, subsonic

and near subsonic flight. Therefore, no real roots to Eq

(4.35) exist for orbital inclination angles between 0.5 and

75.0 degrees and vehicle speeds ranging from circular

orbital velocities to low supersonic speeds. This result

indicates the non-rotating Earth dq/dh equation of motion is

invalid for Earth atmospheric entry for the ranges of

orbital inclination angle and velocity investigated.

Therefore, a first order solution (Section V) to the

complete dq/dh equation is required for Earth atmospheric

entry analysis. This solution is developed in the next

section using the method of matched asymptotic expansions.
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V. Solutions to the Equations of Motion

Using Matched Asymptotic Expansions

In Section IV, the terms in the five equations of motion

that account for Earth's rotation were examined. It was

determined that trajectory states exist for four of the five

equations of motion where the rotating Earth terms give a

zero contribution. For the fifth equation of motion, the

dq/dh equation, it was shown that the rotating earth terms

always have a non-zero contribution for realistic lifting

entry trajectories with entry inclination angles between 0.5

and 75.0 degrees and speeds ranging from circular orbital

velocities to low supersonic speeds. Therefore, to

adequately model Earth atmospheric entry, a solution to the

odq/dh equation is required that includes the rotating Earth

effects. This solution, along with the non-rotating Earth

solutions to the other four equations of motion, is

developed in this section, by application of the method of

matched asymptotic expansions.

Combining the Small Parameters

In Section III, E was defined to be the ratio of the

planetary atmosphere scale height and the planet's radius.

A second small parameter was introduced in Section IV to

non-dimensionalize the rotating planet terms in the

equations of motion. This second small parameter was

defined as the square of the quotient of the planet's

rotational velocity at the equator and the prograde,
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equatorial circular orbital velocity at the mean planetary

radius.

2
1 r

and E= [/ 2  = 2 _ (5.1)
fir. (gr.) 1*

The general equations of motion for three-dimensional,

rotating planetary entry were given in Section IV in the

form

du - u 2uBe-h/rE I C"

dh (-+h) EIsiny + . D -ta

u cosI - 2Ec (+h ) c osasin Isina (5.2)

[o 2 2  htany

d q _q2 C LB- h/E 2[ (1+h) /2s

dh (l+h) u - -D 2 cos

- h (1)2 -1 ( t a n s i n a c o s a s i n I + 1 -sin Isin a) (5.3)

da 1 C L Be-h/E . sinasina
dh- (l+h)tan7  C D E 1  cos7sin7tanI

- 2 [,E (+h1/2 sinacSI (cosatan7 - sina)2 U Itany

. 2 2
+ E (l+h) 2 .sin acos I (5.4)

utany

dfl CL Be-h/E sinasina (1+h)] sing
dh-CD E cos7sin7sinI u tn(cosatan7-sina)

.2 I E utn
+ 2 (l+h) 2 .sin 2acosI (5.5)

utan7
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I C L.Be-h/E lsinacosa (1+h) 1/2 oai.dh C cossin7 + 2 E" tan7

dh D I O7Sf7 1

* (cosatan7-sina) _ E (1+h)2 .cosasinacosIsinI (5.6)

2 utan7

Values for the two small parameters must be calculated

and substituted into Eqs (5.1) - (5.6) for each planet

studied. For the Earth, the value of the first small

parameter is approximately 1/900 and the value of the second

small parameter is approximately 1/289 . To simplify the

following analysis, it is noted that the first small

parameter is approximately equal to one third of the second

small parameter. Hence, a new small parameter, E, is

defined for Earth entry analysis as

1 Q/2 / /2 = E2  and e =3C 2  (5.7)

30 - 2 2

The Equations of Motion for Earth Atmospheric Entry. To

obtain the equations governing Earth atmospheric entry, the

first and second small parameters are replaced in the

equations of motion by E and a constant. The resulting

equations are used in the derivation of solutions for Earth

entry:

•h-/C 2 4[ulh] / 2

du - u 2uBe-h/ 2 [
2. r tncs 4E 43u(1+h)] CS

dh =(I +h) E 2 sin +I ,tan cs' c

_ 6 2 (1+h)2 .cosasin2 Isina (5.8)
tan7
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- - - B .cos - 2q[ 3 (1+h)] cos

dh -(1+h)L lu - I 0CD c 2  -csr-Zq UC

3

3- E 2 (l+h)2 "uf -(tan7sinacosasin 2 , +- sin2 Isin 2 a) (5.9)

da 1 _ L Be - h/E 2  sinysina
dh (1+h)tan7 CD E2  cos7sintanl

2 [3(1+h)]1 /2sina c os a

u tan7 (cosatan7 - sina)

+ 32 (1+h)2 -s in 2 a cos2I (5.10)utanly5.0

dl L Beh/E sinusina 2[3(1h)]' /2_•
dh CD 2 cos7sinsinI + 2 u tan "syn(cosatan7 -sina)

D. J
+ 3E 2 (1+h)2 sin 2a cosI (5.11)

(l h) utany

-/F 1. __ snosa+23 h 1/2dI CL Be-h .sincosa r1) cosasina
dh CD E2 cos7sin7 U tan7

'(cosatan7 - sina) - 3E 2 (l+h) 2 "cosasinacoslsinI (5.12)
utan7

It was previously seen that the latter three of the

above equations are coupled:

doi tana dI 
(5.13)

dh - sinI dh

da 1 _ tanadI (514)
dh - (1+h)tan7 tanI dh

Eqs (5.8) - (5.12) describe the three-dimensional,

rotating planetary entry of Earth. However, the generic
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application of these equations to some of the other planets

is not lost. As an example, consider the problem of Mars

atmospheric entry. To make Eqs (5.1) - (5.6) applicable for

Mars entry analysis, the first and second small parameters

are calculated using Mars planetary constants. A new small

parameter, E, differing from Earth's by only a constant is

then defined. For Mars, the first small parameter has a

value of approximately 1/350 . The second small parameter

is calculated from IAU defined constants to be approximately

1/218.

1 1 2r* 1IE W IP fr -350 9*=  g 218

The first small parameter is approximately equal to

three fifths of the second small parameter. Therefore, a

unique E is defined for Mars entry analysis:

( l /2= (3E/5)1 /2

18.7 - 2

2 E 2

or E 1 = E and r2 -3 (5.15)

To adjust the equations of motion for Martian

,%• atmospheric entry, the new first and second small

parameters, as a function of E and a constant, are

substituted into Eqs (5.1) - (5.6). Hence, the equations of

motion for Mars entry will differ from those for Earth entry

analysis by only a constant in each expression containing E.
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The Method of Matched Asymptotic Expansions

While many analytical methods have been applied to the

problem of planetary atmospheric entry, one method remains

relatively unexploited. This is the method of matched

asymptotic expansions. From an entry vehicle's viewpoint, a

planet's atmosphere forms a boundary layer of density in

space. Aerodynamic forces on the vehicle change from

insignificant to dominating for a relatively small change in

altitude. A variety of methods, including composite

expansions, multiple scales, and matched asymptotic

expansions, have been utilized to solve boundary value

problems. However, the method of matched asymptotic

expansions is more "versitle" and "effective" than these

other methods for both linear and nonlinear problems

composed of partial or ordinary differential equations

(Nayfeh, 1985:257,258). Past papers describe successful

applications of matched asymptotic expansions to solve

limited flight mechanics problems involving lifting

atmospheric entry. (Busemann and others:1976, Shi and

Pottsepp:1969, Shi:1971, Shi and others:1971, Willes and

others:1967). Most of these efforts used two-dimensional

equations of motion and assumed a spherical, non-rotating

Earth model except Busemann (Busemann and others, 1976),

where the three-dimensional equations of motion were

employed. In the following pages, the solution for the

dq/dh equation of motion for a rotating Earth is derived.

:To obtain this solution, the solutions for the non-rotating
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equations of motion are first derived from the rotating

Earth equations of motion.

For a boundary layer problem, the method of matched

asymptotic expansions gives two or more solutions, each

valid in specific regions of the domain. These solutions I
have some overlap and can therefore be matched. The

matching conditions allow for the construction of a

composite solution which is valid over the entire domain.

In this analysis, the entry problem is treated as a boundary

layer problem with a solution developed away from the

boundary layer, valid for exo-atmospheric flight, and a

solution developed at the boundary layer, valid for

atmospheric flight. These two solutions to the equations of

motion can be independently applied in their respective

domains. However, it is more convenient to have a solution

valid for the full range of entry conditions. Hence, the

inner and outer solutions are matched and a composite

solution valid in both regimes is constructed.

Outer Expansions

The solution developed for the exo-atmospheric portion

of the domain is called the outer solution. This solution

is developed from asymptotic expansions of the equations of

motion using the small parameter, E. The outer solution

variables are denoted by the superscript "0" Straight- .14

forward expansions of the outer solution variables are made

and are as follows:
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U U +EU + E2 u +
0 1 2

S= 0 + 11  + 2 0 + ....q 0  q 2o 1 20

a= 0 + E I + 1+ ....

o = 'O +  E 2 'Y2 +

The solutions for lifting atmospheric entry of a non-
0 1 2

rotating planet are of order E0  Adding the rotating planet

model to the atmospheric entry problem causes additional

1 2
terms of order E and E to appear in the expansions of the

'0

equations of motion. These additional terms are

relatively complex but require the solutions to be carried

out to order EI in order to account for Coriolis

acceleration on the flight vehicle. To also model the

usually insignificant Centripetal or Transport

acceleration, solutions would have to be carried out to

order E 2  The solutions developed in this study are to

order c0 for Eqs (5.8), (5.10), (5.11), and (5.12) and to

order el for Eq (5.9), the dq/dh equation of motion.

Solutions developed to order e act as a correction to the
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zero order solutions, a correction which accounts for the

significant effects of a rotating planetary atmosphere.

In the following pages, the equations of motion are

expanded for small e using the straight-forward expansions

given by Eq (5.16). Many of the common expressions that

contain E in the equations of motion are expanded in more

detail in Appendix B.

The du/dh Outer Expansion. The outer expansion of the

du/dh equation is given by

du du du -[u0 +Eu +E2 u2

dh dh dh - (l+h)

-- (u +Eu +E 2 u )Bexp(-h/E 2 ) icn0Y7• ]
2 0 1 2 Lsin -yo " I s i 2 0

1 + cCOS2 tany0 +

+ u 2u )(1]/2

41E[I3(u 0- +Eu I+E 2 )(l+h)J (OI0-C sinI 0)- 4E3u + ) (cosl 0 -eI 1  0lO

- 6E2 (l+h) 2 (cosa 0 - Ea 1 sina0 )(sina 0+ fa1 cosa 0 )

(sin2 I 0+ 2I sinI0 cos I 0 )t + ]+ )

du -U
e0 terms: 0 - 0 (5.17)

dh - (l+h)
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terms:du 1  -u 4 [ (h)] 1/2 cos(

The dI/dh Outer Expansion. The outer expansion of the

dI/dh equation is as follows:

dl0  d1 + 2 d1 CL Be-h/,E2

dh + Edh + E dh - D - 1 0

[C0S7 +-Y -'I 2] ([s 70 sno sino

EuE 1 /
+sn ° + 3 1 cos 2t -(C osin a E 00

ta(sin0 + ECa Iosa 0 [tanyo0 2  cosa 0  _ 1]sina0).

- 2 (1+h) 2  E u i7

u 0 0 a lyo sin 2 y

-(sina 0 + Ea 1 C o s a0 )(cos a 0 - ca I sin a 0 )(sinl 0 + :I cosl 0 ).

(cosl - El sinl) + 0(E 2 )

dl(

terms: dh0

l terms:
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dI 3(1+h)] 1/2 Cosa sin(.

= 2 u tan7 0  (cosa 0 tanyo- sina 0 ) (5.20),dh - 0  0a

The dO/dh Outer Expansion. It has been noted that the

dn/dh equation is a function of the dI/dh equation as well

as a function of a and I. This dependence exists for the

outer expansions of these equations as well. From Eq (5.13)

dO tana dI
dh - sinl dh

The outer expansion of the dfl/dh equation is

dfo dOi + dOl rdl °  dl dl 1
dQ0 dO1 2 1O _ I 0 1I 2 dII

+_ E_ + _ E - =E +Edh dh dh - dh dh dh

iFl 1cosl

tana + En 1I 0 + 0(2
0 Cos2 a sin 1 sin2 1

o d11o dlo

E terms: dh - 0  since dh -0 (5.21)

dil0 tanao dl

El terms, dh - sinI 0 dh

d 1  2 3(l+h) 1/2 sina0

dh u J tan70 (cosa 0 tan O  sina O )  (5.22)

The da/dh Outer Expansion. It has been noted that the

da/dh equation is a function of the dI/dh equation as well

as a function of a, h, 7, and I. This dependence exists for

the outer expansions of these equations as well. From
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Eq (5.14)

da I tana dI
dh-(1+h)tan 7  tanI dh

The outer expansion of the da/dh equation is

da 0  cia 1 2 da I 1 __ ___

d ddh (1+1i) [tan70o si2J

dhO +J t Ed 0~ IIE
+E dh + h anlna + -+ O(E

d0 shtn in2 0 cos~a0

E0terms: ia 0  1____ since =,O 0 (5.23)dh -(1+h)tanyo dh

da tana dI

terms: -h 2* -
dh (lh)sn 70 tanl dh

dh -(1+h)sin
2 70 5.4

[ (1+h) .1/2 sina 0sinI cs al -sino(.4
3u 0  . tanyo tanIl 0 an 0  ia)

The dg/dh Outer Expansion. The outer expansion of the

dq/dh equation is as follows:

dqO dq1  2 dq I [q.+Eq +,E q, [2

dh + dh + E dh = (1+h) [(%O+ 2Eq)

EU.,e - 1 coso 2E (qO + Eq + :q

u0 U 0 2 D rE2  2
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r r~ ~ EU /2
3(1+h)[ U"(coSI 0 - eII sinI0 )

u4 0 U J

3E 2 (1+h) 2 (q 0
3 + 3qo2 Eq,) u U tanyo + E7o ]

0u0 Cos 0

(sina 0 + EI cosa )(cosa 0  - a sina0 )

2 2
'(sin 10 + 2EI sinI0 cosI ) + 1 - (sin 10 + 2 E I sinI0 cosI0 )

(sin
2 a 0 + 2EaI sina 0 cOsa 0 )] + 0(E 2 )

dqo qo qO2  1
tem: dh- L (5.25)COtrm h (l+h)L u 0  1

E terms: dh -( 1- + 11--h 1 U0
--

01 te m d q  I qO [ q O 2 u l  2q,] + q, [ q 2  ]

d- dh (l+ h) Uo02 uo0 (1+h) u 0

qo 3 (+h)]1/2
- cosI0  (5.26)

Outer Expansion Solutions

a0 0
E Terms. The complete set of E term outer expansion

differential equations, derived above, are

du -u
0 (1+h) (5.17)

dI
dh0

dh - 0 (5.21)
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ci a0 - (5.23) I
dh (1+h)tan7

0

dh - % 2 
(5.25)

Solutions to this set of differential equations are

derived in Appendix C and are given below. Eq (5.30) is the

outer zero order E solution to the dq/dh equation of motion.

I= C (5.27)0o 5

110 = C4 (5.28)I

u (1+h) = C (5.29)
0 1

1 _2 (l+h)2
2 1h C (l+h)2  (5.30)%C

[1 - C 1/(l+h) ]
a( Cos 20 )1/

2  
+ C 3 or

u= 1 + cos(a0 - C3) 1 - C2C2J1'/ (5.31)

E Terms. The complete set of E1 term outer expansion

differential equations, derived above, are

du -u /24[UI  [ (1+h)] 0 CS (5.8
dh -(1+h) 0 u

dIl [1 1h 2 Cosa 0 sinI 0
dh -2 Uo "tan% (Cosa 0 tanT0 sinao )  (5.20)
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dfli tana0 d1
-- ,_- (5.22)

dh sin0 dh

or dfh 2 U3(1h)] 1/ -Ola - sinao)

da - tana 0 d

•_d_ __ ___ _ 0 , (5.24)
d = (1+h)sin 2 70 tanI 0 dh

or

da 1 [ 3 (1+h) 1/2 sina0 cosI0

dh- (l+h)sin 2 702 u0  tany0  (cosa 0 tan70 - sinE0 )

2 ,2

dh - (l+h) 2 u 0 + (l+h) u0
u 00

2q0 3(1+h) 1 /2
2q u0 cosl 0  (5.26)

A complete solution to the dq/dh equation requires that

the solutions to both Eqs (5.18) and (5.26) be found.

Solutions to these differential equations are derived in

Appendix C and are given below. Eqs (5.32) and (5.33) are

the solutions to the order e terms in the outer solutions of

the du/dh and dq/dh equations, respectively.

c6 2 (3C 1 h/2
- (l+h) (l3h~) (lb (5.s2)

013 014 014

q1 C 16 (6)2 C6 20 16
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where C C and C are functions of C and C and C I
1 3' 1I4 1 6 1 2 20

is a constant of integration. Expressions for these

constants are given in Appendix C.

Order E Outer Solution for the dq/dh Equation of Motion.

The order E outer solution for the cosine of the flight path

angle is given by the substitution of Eqs (5.30) and (5.33)

into Eq (5.16).

q = qo + iEq + ( 2 )

q0  [2(1+h) - C (l+h)2] - 1 / 2

C 2 C 214 C  C exp -C 1 6 h  (5.34)
- 16 ( 16) 16

Inner Expansions I
The solution developed for the atmospheric portion of

the domain is called the inner solution. This solution is

developed from asymptotic expansions of the equations of
motion using the small parameter, E. The outer solution

variables are denoted by the superscript "i". Straight-

forward expansions of the inner solution variables are made

and are given below.

i 1 2U U + E U + C U + ..
0 1 2

q q0 + E q, + E2 +
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I =10 + E 11 + E12 + .... (5.35)

i 1 2 +

n 0 +E I  + E 2 +

i 1 2

a= 0  E 1  E 2

7 = 7 0  + 1+ 2 + ...

To derive the inner expansions, a new independent

variable is required so as to force the equations of motion

to focus on the boundary layer region. , a magnified

version of h, is the inner expansion independent variable.

Hence, C is defined as the magnified non-dimensional

altitude and it is given by

h /E 2  or h = E2 (5.36)
,.

Therefore d= E2 and by the chain rule,

dy _dydh 2d (537)
d - dh d 

=  dh

The equations of motion for Earth atmospheric entry are

now transformed from functions of h, represented by Eqs

(5.8) - (5.12), to functions of the magnified non-

dimensional altitude, (.

dui - E 2 u 2ui- BCL i ]
2 i i1  + D cosa (5.38)

dC (1+E2( sin-y CD

1/2 i 2 i i

41E [3u'(1 + E2) cosli- 6r4 (1+r2 )2.cosa sinI sing
tany

• .,_

91



r 2 C1/
- d ---- 1_ L -Be -cosa - 3 ~ I2cs

(1 +E2 0) Lu J CD e Eq u1  J O

3E (1+y~ (tan-y sina Cosa sin 2 1 1

+ 1- sin 2 1 sin 2 a) (539

S2 CTda -- E-L.BeC s'flus'fl

1 22 11
21E )a' CD n cos7 1(Csitan-li sn

ii

433 E~12 *sinaacoss
+ 3E (coa+an (5.40)1

Lu~u tafl7

2i 2i /
(l+E L) 5sif sa 3 (.0

dfl-C + LSfU ~l 2E (5.41)

aC tD COS7 sin7 sinl

sina 4 2 2.sin a cosl

tai(cosaltanyl - sinal) + 3f4 (l+E 3. u 1a7

iT C 3(1+ 11l/2 i
= iBe-C. ,os + 2E ~ Cosa1

dC C05 51l I

sna (ait I - sina I

4 2 2 cosa sina cosT sinl

u tan7

The latter three of the above equations are coupled.

d 11 tanal*dI' (5.43)

si = sinI'
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-I

da i  2  tana i dI i

d" (+E 2 C) tany i tani dC (5.44)

In the following pages, these equations of motion are

expanded for small E using the straight-forward expansions

of Eq (5.35). Many of the common expressions that contain E

are expanded in detail in Appendix B.

The du/dE Equation Expansion. The inner expansion of

the du/dh equation is given by

du du du [u 0 +u- 2u

d 0 + E d -- +  2 d 1 E 2 ( + 2  )

2(u +EU +E 2 u)Be- [1 cos00 1 2sin -yo Isin 2 yo

S"1 + -Cosa t + yo
D Cos 70

[3(u0 +EU 2 u2 )( '+E2 ) 1/2

- 4 (cosI - EI sinI )

- 6E (1+E ) [(cosa0 - Ea sina )(sina + Ea cosa)

2 3 17 2]+o
(sin I + 2E I sinI0 cosI 0 ) t 2 +J O(70

0 aA sin Y

This immediately reduces to

du du [(2  2 ( e- r COST0d 0  0 1d- s 0(i = y -2(0 l Be % [ 1
sin 0  sin 2
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. CL. CosWa c L. Cos a +C L. Ev coso, 2

+ D cos70 - D cos + 170 + 0(E)

E0 tem: duo 0 2u0Be- .[ 1 +C L.Cos_a (5.45)e DrCms 0d sin o sn Ccos2 0

du [ COsi0 CL __ os
E terms: -- 2u Be- + C0 (5.46)

_ 0 sin CDcos7

c L  71cOs2 1 + cosu I + 0(E2 )
CDs nyCos 2UlBe" sin0 ?D CS70

The dI/d( Equation Expansion. The inner expansion of

the dI/dC equation is

d + d- + 0( 2 ) = D  0 0

+ Ed:' BeCsina(cosa - Ea sina
1C nT0 1

c0os7° + E71 270 s n E7sn-2]

+ 2f3(1 + )[u - E -- ] (Cosa -0 ea sina 0 )
0 u

(sina0 + Ecosa)[1 67 1  [[(cosa0 E sina0)

[tarnT 0 + E (sina+ Ea Cosa)]

[U 0 0n

sin2 yo

u0  tau sin 2 7(0

iii-(s ina - - - . ). -+ - ,s )a E a. s i n a
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)I

"(sinI + EI cOSI )(CosI 0 - EI sinI + 0(E: I
This equation reduces to

dl dl Cd + Cd-- + O(E) - "Be-Csina(cosa - sin0

____ 0 sinT0 _ cos___2

CS0-E7 1  2 s 0o E 1 + 0(E)
,-,"E sin 7]

Sdl 0 C L. Cos0
E terms: - = D Be-Csina" (5.47)cos7 0 sin70

E terms: (5.48)

dl CL sina0  Cosa_ 0  Cos 0

d- = CD Be-C'sina -I cosY0sinT0 + 7C 2 7 2

The dfO/dE Equation Expansion. It has been noted that

the dn/dC equation is a function of the dI/dC equation as

well as a function of a and I. This dependence exists for

the inner expansions of these equations as well.

dOi  tana i dI i

dC- sinI3. d

The inner expansion of the dO/d( equation is

d0 2 df - [d + d + E 2 I
+E T( acEC d d(]

EQ [ cosI
tana + 1 1I 0 + 0(E )

0 Cos 2ca0" sin0 sin 10
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With substitutions, the dfl/d( equation expansion becomes

df)0  d 1 +2 dO 1  siCcs L.c sina)
dt EdC D 0 1 0

1tanaO + EQ 1  1 -E colco 2  sin - sinl

tems d+ C_ I BeSI 0sinasina
0 din c 0 sin sinl

0

dOl1 L -sn Y sina 0  f sina 0E terms: d_=W BesnY 2
CD Cs'siIsin -y siI 0

sina cosl Cosa 1
-i0 0 - +a 0 (5.50)

cos-0sin-1 sin 2 10 cosfy0 sin70osinI 0

The da/dC Equation Expansion. It has been noted that

the da/dC equation is a function of the dI/dC equation as

well as a function of a, C, 7, and I. This dependence

exists for the outer expansions of these equations as well.

From Eq (5.40)

___ _ _______ idi
da 1 tana

dc 2 i d

The inner expansion of the da/d( equation is

da da, da 2 E 27]
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e. d o  dl dl ][ _ 1
' - - + " + _ 1d 1En1 2 10

dC ' dC Tc]an

L cos 2 a0
00

With substitution, the following expression is obtained:

da0  da 1  2 da 1  
2  1 _ 7 1

d +d- d - (1+E2 ) tano sin2 70.

CL-" [ sin70 1
c Be- sin (cosa 0 - aI sina0 ) EOS 7 1 COS 270

1 cosD0[ 1 fI cos

sin -y0 ' sn1 . 2 70 tanI0 sin 2 10

Ea 1 2

tana0 +  2 + 0 (E )
cos a0

0da° 0 CL B - " sinorsina° (551
E terms: d - - tanI 0 sino 0 (5.51)

dR C CL [Ci 7 s ina 0  y-s ina 0

E1 terms: -- Be r ______- idCD C-sn71cos2 7 tanI sin 270 tanI0

0I 0 +0 1
sina 0 + aI -Cosa 0 (5 52

1 cOs7 sin70 sin
2 10 cosy0 sin70 tanl 0  (5.52)

The dq/df Equation Expansion. The outer expansion of

the dq/d( equation is

dq+ dq+ 2dq1 2 [0 +ql ,+2q2 [[q.2+ 2Eq, + 0( 2
di" + .d' A-+. d -(1
d( ad "F 2
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1]J - Sb--Be cosa - 2E (q0 + iEq1 + r: q)
u 0

3i - 2CS Isn

0 u~i ~ ol 0 1l sinl

4 ,2 2,3 21 _U E11 ___

3E (1+E () ID + 3 %OE q) 1 u0 2 111 anyfo + O20

-(sina 0+ Ea1 ICosa 0) (Cosa 0- Ea I sina0)

(sin 2 1I +2EI Isinl cosl ) + 1 - (sin 2 1 + 2E1 sinI cosI 0

(sin 2 a0+ 2Ecz I sa0Cosa 0 )]1 + 0(E2)

E0terms: dO CL eCoo (5.53)

E terms: dC (5.54)

Inner Expansion Solutions

'S0 0__ __

ETerms. The complete set of E term inner expansion

differential equations, derived above, are as follows:

du0 - 2u 0 Be +~ ' CDcoso ] (5.45)

dI C sinucosa
o -0  L B - C . - 0 (5 47 )~

98



dl 0  C sinasinno-: L."Be-C 0 (5.49)
"-,- CDcOS7 0 sin7 0o sinI 0

da 0o CL B-.sinasinao0
da0  

0 L (5.51)
d - CD  tanl 0 sin70 cosl I
dq° -CL Be-cosa (5.53)

d = C D

Solutions to this set of differential equations are

derived in Appendix D and are given below. Eq (5.55) is the

inner zero order E solution to the dq/dh equation of motion.
CLI

qO = C .Be-Ccosa + K (5.55)
-2DD

u0 = K3  2 exp 2 CD7o (5.56)

sina 0 sinl 0 = sinK4  (5.57)

cosa 0 = cosK 4 cos(K5 - 0 0) (5.58)

cosl 0 = cosK cos tanalog tan(! +-)] + K, (5.59)

E I Terms. The complete set of El term inner expansion

differential equations, derived above, are as follows:

du e [ Cs0 CL cosa CL 71 Cosa
- " + 71 C cosT0 C sinT0 co5 702d 2U sin 7 D 2iyoo 0

r. CDLcosa
- 2u Be "  + + O(f ) (5.46)
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dI C -

- Bd( - Be

sina0  cosa 0  cosa0__-___sin0_ 01 _ 0 (5.48)
asICos2 0 sin 2 70

dQ I tanao dl
9. d _ 0 d (5.50)

d I  CL sina sina0
or d = - D  Be- sina o 0  n  - 1sin 2  y0 s i n I

0

sina0 cosI0 a cosa°

- o 2 cosy ° sin7 0 sinI0

da tana dlI
% 1 0 1(5.52)d - tanl0 d5

00

da eL  sina0  sina0
or -- -etsino'7- ______

D  ios 0 tani0  sin2 70 tanl0

sina 0+ al cosa 0

S11 2 cos70 sin70 tanI]cos-yosinyosjn 1 0

dq
- 0 (5.54)

A complete solution to the dq/dh equation requires that

only the solution to Eq (5.54) be found from this set of

equations. The solution to Eq (5.54) is trivial; the

constant of integration is defined as K
7

q, =K 7  (5.60)
,.10
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Order E Inner Solution for the dq/dh Equation of Motion.

The order c inner solution to the cosine of the flight path

angle is given by the substitution of Eqs (5.55) and (5.60)

into Eq (5.35).

q = qo + Eq + O(E 2 (5.35)

q = -DDBe- cosa + K + EK7  (5.61)

CD7

At this point, the inner and outer solutions to the

equations of motion have been derived to order E0 . These

are the solutions to the atmospheric entry for a non-

rotating Earth. In addition, the inner and outer solutions

to the dq/dh equation of motion have been derived to order

E. These latter two solutions include the Coriolis

*. acceleration on the flight vehicle and therefore account for

the significant effects of a rotating Earth. In order to

create composite solutions valid for both the inner and

outer regions, matching is performed.

Matching Zero Order E Solutions

One of the fundamental rules of the technique of matched

asymptotic expansions is that the outer expansion of the

inner expansion solution is equal to the inner expansion of

the outer expansion solution (Nayfeh, 1981:277,278). This

condition allows matching of the solutions, reducing the

number of unknowns in the solution equations. On the
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following pages the inner expansions are taken of the E0

outer expansion solutions. Next, the outer expansions are

taken of the 0 inner expansion solutions. Finally, the

derived expansions of expansions are matched and the inner

solution constants of integration are expressed in terms of

the outer solution constants of integration.

Inner Expansions of Order 0 Outer Expansion Solutions.

From Eq (5.29), the one term outer expansion for u is

0(u O) = C /(l+h)

Noting that = h/E 2 or h = 2 and rewriting this

" equation in terms of the inner variable, , gives

S(u 0 ) c/(l+E2 )

Expanding for small e gives the inner expansion of the

outer expansion of the zero order E term for u.

ri
[(u o ) o ]  C c (5.62)

From Eq (5.30), the one term outer expansion for q is

1 /2

0 20(
SC C 1 [2l h - CI C'2 (1 + h)]I

Rewriting this equation in terms of the inner variable

(qO ) /[ 2(l + E2 C C2 02(1 + E2)] /

102

-S -. |



% Expanding for small E gives the inner expansion of the outer

expansion of the zero order c term for q.

(q,0 )] = C10/[2 + 2 2C - C 2 I C2 2C0IC2 2 1]

[( Oi= [C/(2 - 0102)1' (5.63)

From Eq (5.28), the one term outer expansion for n is

0(110) = C4

Rewriting this equation in terms of the inner variable

simply gives

0(a 0) o 4

Expanding for small E gives the inner expansion of the outer

expansion of the zero order E term for 0.

[()01 = C4 (5.64)

From Eq (5.27), the one term outer expansion for I is

0

1I0 ) c C b

Rewriting this equation in terms of the inner variable

simply gives

0

(I) =C

0 5
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Expanding for small E gives the inner expansion of the outer

expansion of the zero order E term for I.

From Eq (5.31), the one term outer expansion for a is

(a ) co - /(l+h)
0"= cos 2 )1/2 + C0" ( c 2

Rewriting this equation in terms of the inner variable:

(%0 - C[ - + c (*2 0

(a - cos 2C + C
(1- 1 2

Expanding for small E gives the inner expansion of the outer

*expansion of the zero order E term for a.

1 [(a0)o~i _ [ 1 - C(5.66)

kaXI Cos (1 _ C 21/3

Outer Expansions of the E0 Inner Expansion Solutions.

From Eq (5.55), the one term inner expansion for q is

-=CLBe -cosa + K
0D

Noting that = h/E2 or h = E 2 and rewriting this

equation in terms of the outer variable, h, gives

CL 2(qo) i c 'I.Be"h/E cosa +KDK
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Expanding for small E gives the outer expansion of the inner

expansion of the zero order E term for q.

[(q.)]o K(5.67)

0

and hence [(-0) i ] = cos-'K1 (5.68)

From Eq (5.56), the one term inner expansion for u is

(u 0  exp cosaC

Rewritten in terms of the outer variable

=u K q exp 2CCos(

Expanding for small E gives the outer expansion of the inner

expansion solution of the zero order E term for u.

o -2cos-1

exp cosaCL/CD (5.69)

From Eq (5.59), the one term inner expansion for I is

(1O) = COS-o cosK' + ( O )i]] + K6]]

Rewritten in terms of the outer variable

(I )=Cos- cosK cos tana-log tan - + II +K
0 [4 1 114 2 i 6
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:[.-. Expanding for small E gives the outer expansion of the inner I
expansion of the zero order E term for q.

[(IO )i] = cos- cosK cos tan

+4
*log[tan[ + 2co 1 + K(] (5.70)

From Eq (5.57), the one term inner expansion for a is

sinK

0  isin (I 0 ) i
S

Rewritten in terms of the outer variable:

(a 0 ) = sin- 1[ sinK 40sin (I 0

Expanding for small E gives the outer expansion of the inner

expansion of the zero order E term for a.

[(a 0 )i] sin [sinK 4/sin[I)]0 (5.71)

where [w10 )i] was given by Eq (5.65)

From Eq (5.58), the one term inner expansion for fl is

(fl) cs (a
( =Co + K

4

Rewritten in terms of the outer variable:
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- cos (a)
(0 0 ) = -cos [ cosK ] + Ks

4

Expanding for small E gives the outer expansion of the inner

expansion of the zero order e term for 0.

(0)i 0 = -cos' cos (a0 ) /cosK4  + K s  (5.72)

where [(a0 )i] was given by Eq (5.66)
00

0 Term Matching. As previously discussed, the outer

expansion of the inner expansion solution is equal to the

inner expansion of the outer expansion solution.

Mathematically,

I. 0 i

[(x)'] = (x)0], (5.73)

This is sometimes expressed (Lagerstrom, 1972:90) as

hintu [limin x] = limi( limout x]

2where x = x - + x 2

The expressions derived for the outer expansion of the inner

expansion solution and for the inner expansion of the outer

expansion solution can be matched for q, u, a, I, and 0.

Matching the Speed Ratio Equations. From Eq (5.73)

.,.
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- - - 1 4W.J6-W Y 6-V-
* ,Therefore, from Eqs (5.62) and (5.69)

[-2co s - KI
C1 =K 3 K 2 exp 1 L (5.74)

cOUL/CD J

Matching the Flight Path Angle Equations.

o i
[(q))i] 0  [(q,] 3.

Setting Eq (5.63) equal to Eq (5.57) gives

[/2

c/(2 - CI) (5.75)

Matching the Inclination Angle Equations.

0i

[ 0I( ] I [10)01

Equating Eqs (5.65) and (5.70) gives

C [cosK4 cos [tanu"

C-1K
rr os K],-log tan + - + g6 (5.76)

'S

Matching the Argument of Latitude at Epoch

Equations.

0 =[ooiI

Equating Eqs (5.66) and (5.71) gives
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4 '-k . - .- . . **..'. J , -. .L : - o . b -.-. . -, . . . ° :

-1o r 01 [. ,rT lio
2 - CK )C1/2J + C = sin- ' sinK4 /s i n [(IO)J

1 2

and since [(10)i1] = [(I0)J = 5  then

- )1/2 + 03 = sin-' si -In (5.77)

-~~1 (1 ] + 03 2 Ji~ [iK12

Matching the Longitude of the Ascending Node

Equations.

Setting Eq (5.64) equal to Eq (5.72)

Cos [cos (a(0 ) /cosK 4  + K5

r1 1__ __ _

-' [[1 4
C4 = -Cos Cos - cos I

( - C1 2

+ C/cosK] + K5  (5.78)

The inner expansion solutions, valid in the domain of h

near the boundary layer where aerodynamic forces are

dominate, have been matched with the outer expansion

solutions, valid in the domain of h away from the boundary

layer. The results of the matchings are used to reduce the

number of unknowns in the solution equations. The constants

of the outer expansions are determined first, often from
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initial conditions, in a planetary entry problem. Hence, it

* is desirable to express the constants of the inner

expansions, K, in terms of the constants of the outer

expansions, C. From Eq (5.75)

K [1/(2 - 0(02)]5

From Eqs (5.74) and (5.75)

[-2cos-' [C/(2 - 1C 2)] 1/21
K3 = (2 - Cc 2 )exp[osac/C (5.80)

From Eq (5.77)

K4 = sin -  inC 5 s i n - cos - C 21/2 + C3] (5.81)
I L L -. c 2

From Eq (5.78)

K5  = C4 + cos -  cos - cos -  2 )1C2]

(I-C C )/
1 2

S30]/cosK4] (5.82)

From Eq (5.76)

K6 = cos 1 [cos05
6 Cos cosK 48

- tana'log tan + 2 1 (5.83)
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With Eqs (5.79) - (5.83) the inner solutions can be

written in terms of the constants, C.

Zero Order E Solutions to the Equations of Motion

A solution good for the entire range of h is desired for

the convenience of not having to apply the two sets of

solutions to one entry problem. The composite solution,

valid everywhere in the domain, combines the inner and outer

solutions that were valid only in certain overlapping

regions of the non-dimensional altitude domain. This

composite solution is given in the following equation by the

method of matched asymptotic expansions.

y - y + y - (y) = y0 + y 1 - (y) (5.84)

The composite solution is therefore given by the sum of

the inner and outer solutions and the difference between

this result and any expression common to both the inner and

outer solutions. In addition, the inner expansion of the

composite solution is equal to the inner solution, and the

outer expansion of the composite solution is equal to the

outer solution. Mathematically,

i i0 and= y (5.85)

Speed Ratio Composite Solution.

i 0U (u + = [u)O(u) = + -



Combining Eqs (5.29), (5.56), and (5.82) gives the composite

solution for the speed ratio.

u= C1(lh) 1] + K[ -Be h/E ' c o s a + K]

*exp 2cosi [D BeK cosa + K/]DDCOS (5.86)

Flight Path Angle Composite Solution.

qc = (q) 0 + (q)' - [(q)0] = (q) 0 + (q) i [(q) ]o

Combining Eqs (5.30), (5.55), and (5.67) gives a composite

solution for the cosine of the flight path angle.

2/
.q = C I /[2(1+h) - Cl 1 +h 2

CL B-h /E2.

+ -Be cosa (5.87)
CD

Inclination Angle Composite Solution.

J)= + - = (I)° + (I)' - [(I) i ]

Combining Eqs (5.27), (5.59), and (5.70) gives a composite

solution for the orbital inclination angle.

I c = cos -1 cosK4cos tanr (5.88)

,-c 1 . + K

-log tan [ + l0cos C D Cosa + K +

112

a'i

A.AP %iL **f,~~~a-



P%2' Longitude of the Ascending Node Composite Solution.

a 0( + (a)o () - i]oa=a + i- =()+() L (a)

Combining Eqs (5.31), (5.59), and (5.66) gives a composite

solution for the longitude of the ascending node.

rC -1 1/(
a Ccos 1  C2C)/2

1 2

[rr
+ I7L h1  coso, + KI] +K

+ cos -  2 (5.89)
(1- C C)1/2

.1 2

Argument of Latitude at Epoch Composite Solution.

D c = (a)0 + (O)i - [()O]i = ()o + ( -)i. [(O)i] °

Combining Eqs (5.28), (5.58), and (5.72) gives a composite

solution for the argument of latitude at epoch.

c = _cos - [ rcos(a')LcosK ] + K

c4

11l = K - cos- 1 [cos[sin- [sinK /sin(Ic)]]/cosK4 ] (5.90)

For Eqs (5.86) - (5.90), the K. constants are given by

Eqs (5.79) - (5.83). Hence, solutions to the five equations
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of motion have been developed as functions of C C CS2' 3'

C4, and C,.

Matching E Order Solutions to the dq/dh Equation of Motion

An inner expansion of the outer expansion solution is

undertaken as well as an outer expansion of the inner

expansion solution. Matching is performed by equating these

expansions of expansion solutions.

Inner Expansion of the Outer Expansion Solution. The

outer expansion solution for the dq/dh equation of motion

was derived to order E and given by Eq (5.34).

q [2(l+h) C (1+h)2]-1/2
q = C 1  2

0

C 13 14 4- h 1 C exp -C h

- 16 (C1 6  16

Noting that ( = h/E 2  and h = E2 and rewriting the

above equation in terms of the inner variable, (, gives

1/2

(q)0  C C/[2(l + E 2 ) - C1 C2 (1 + 20 V 2]]1

rc 2 C 2 -1

16 (016) 16

Expanding for small E gives the inner expansion of the outer

expansion solution to order E.
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F.~~o1' ~ r.-1/2

[C C1
- ¢ ) 2 ¢ ci (5.92)

* I~6 ~ 2 201

Outer Expansion of the Inner Expansion Solution. The

inner expansion solution for the dq/dh equation of motion

was derived to order E and given by Eq (5.61).

i CL
(q) Be- cosu + K + EK

CD 1

Rewriting this equation in terms of the outer variable,

h, and expanding for small E gives the outer expansion of

the inner expansion solution for q.

[ 0 K + EK (5.93)

Matching. The outer expansion of the inner expansion

solution is equated to the inner expansion of the outer

solution expansion.

[(q)'] 0 __ ___

1 /2 [C _

K + .= C/2 - C C 3 (16)2 -

Subtracting Eq (5.79) from this expression and dividing by E

gives
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C C
K 7 C 2 - 020 (5.94)

e Order Composite Solution to the dq/dh Equation of Motion

The composite solution to the dq/dh equation can be

easily constructed:

q = (q)0 + (q)' - [(q)] = (q)0 + (q) [(q)O]

c211 C (lh)
q = I /[2(l+h) - C 0 (1+ + C'Beh/'Cosa

jCI 3 (_ 0 0 exp-ohi
- 3 4 h- 1 C exp h (5.95)
.[06 (016)2 C 20 16

'. 6 1

-- where C 13 , C 14' and C16 are given by the following relations

derived in Appendix C:

A [1 irai 1/230

C = 2cos(C - " 6 3/2 (5.96)

1.i i111 (C1 )(C11)3/2

300 / 2o0 1 [ 32 [3 1/2

14 2 6 12 + 2cos\ )1 312 ] (5.97)
(C 1 )c ) 1 1' C C 1 3

2 1
C16 =C (C 1 /2 + C C  - (5.98)

where

11 = [---2] and 02 = [C-- - ] (5.gg)
C.I. C C
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and where C and C are constants of integration.• .6 20

Hence, a solution for q has been found as a function of two

constants of integration, C6 and C20, and the constants C13'

C 4, and C 1 6 , which are dependent upon C I and C2

Summary

For convenience, a summation of the derivation results

using matched asymptotic expansions are presented.

Solutions to the Non-Rotating Earth Equations of Motion.

Treatment of atmospheric entry as a boundary layer

problem allowed for the application of the method of matched

asymptotic expansions. In this section, the rotating Earth
'e

equations of motion were asymptotically expanded using a

small parameter that is a function of the planet's inverse

atmospheric scale height, radius, and rotation rate. Zero

order solutions to these equations were derived. These

solutions were of two types, inner solutions, valid close to

the Earth, and outer solutions, valid far from the Earth.

The domains of these two sets of solutions overlapped.

Hence, direct matchings of the expansions of the expansion

solutions were accomplished. This produced equations that

related the inner solution constants, K1 , to the outer

solution constants, C Composite solutions, valid for the

entire atmospheric entry domain of non-dimensional altitude,

117IN
'. , .4

i" " % ". % " % ° ." " " " % % ", ". ". % " ", ' '.* % " ," " * " " " " " " " " • ' - " • " . .".. . . .".. . .".. . . . . . . . . . . . ." -.. . . . . . . . . . . . . . . . " " 
°

. .
~

. " . • .
°

. • . " . '



,.n

were constructed using these relations. These composite

solutions are solutions to the non-rotating Earth equations

of motion for three-dimensional, lifting atmospheric entry.

The outer solutions were given by

I =C (5.27)
0 b

° =c4 (5.28)

u0 (1+h) = C (5.29)

1 2(1+h) C (l+h) 2  
(5.30)

-1  1 "/(l+h) ]a 0  Cos (1 -C C 1 / + C 3  or'e'll

20- )1 /2/ 3

2C 2[ 1 2

u °  I + cos(a - C - 01 2 (5.31)

The inner solutions were given by
Ct,

qo - . Be-Dcosu + K (5.55)

u ° =Kq 0 2 exp C [ o (5.56)

sina sinl = sinK4  (5.57)

cosa ° =cosK4 cos(K -) (5.58)

cosl0 = cosK4 cos tanolog tan(4 + 2 0)] + K6] (5.59)
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Matching the expansions of these solution sets produced the

following relationships between the outer solution

constants, Ci , and the inner solution constants, K.

1 /2

K = [C1/(2 - 0102)] (5.79)

-2cos- 1 [C,/(2 - C 1C 2)1 /2'

K3  (2 -C C2 )exp cos - 0L/CD  (5.80)

[ F [ ]- 1
K4 = sin- sinC "sinI- cos - 1 I/ + C3  (5.81)

1 C 1 2

[ [ 1 (1 Ccsc o/ 2+ocosos - cos - I

1 2

4 C3]/cosK 4] (5.82)

Cos -I cos K+ = cos I -

Cos K
- tanlog tan (5.83)

The equations given above are for the three-dimensional

atmospheric entry of a non-rotating Earth. These solutions

were derived from zero order terms in the expansions of the

rotating Earth equations of motion.

The composite solutions for the three-dimensional

atmospheric entry of a non-rotating Earth were given by
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C 2L
v C 1(1+h) - '] + K[CD Be h a + K]]

•exp-2cos- 1[-Be-'/"cosa + K /-Cosa (5.86)

1 /2
q C = [c/[2(+h) C1 00 (1+h) 2]]/21

CL " -h/E 2*Cos (5.87)

CD

= cos- cosK cos tano" (5.88)

-log tan + cos CDBe 'cosa + Kll + K61]

-C1 - C /(l+h)

"1 2

+ sin 1 sinK /cos - I cosKcos tana'log tan 7

+ 1/Cos- Cosa + K, + K6

+[(1 2C1 /21 (5.89)
1 

2

S= K _cos Cos sin - I sinK /sin(IC)] /cosK (5.90)

Solution to the dq/dh Rotating Earth Equation of Motion.

To accurately model Earth atmospheric entry, a solution

to the dq/dh equation that included rotating Earth effects
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was required. This solution was derived in the form of

order E inner and outer solutions to the asymptotically

expanded dq/dh equation of motion for a rotating Earth.

Matching was performed between these solutions and a

composite solution to the dq/dh equation of motion for the

three-dimensional atmospheric entry of a rotating Earth was

constructed.

The outer solution to the rotating Earth dq/dh equation

of motion was given by

0 2(1+h) 2 -/2
q0 = C 2

C C C

- (0 6)2 2 0 expC 1 6 h] (5.34)
166

The inner solution to the rotating Earth dq/dh equation of

motion was given by

i Cq CD Be- cosc + K .K 7i L--" + ~ EK7  (5.61)

D1

The composite solution to the dq/dh equation of motion is of

order E and hence includes Earth rotational terms. The

composite solution to the dq/dh equation of motion for the

three-dimensional atmospheric entry of a rotating Earth was

given by

r 2] 2. - /
qc = ~C/[2(l+h) -C C2 (l+h) + CDBecoso
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*" (C 2 hC 1 o h (5. g5)

where C C and C were given by the following
13' 14' 16

relations derived in Appendix C:

C 2cos(C 0 C 1 ] (]3 C

13 5 C1 C 3 /2

0 4C C 2+- 1 1 3 ] 1 / 2
C ) 012 + 2cos( )1 3C12 .14 2 5 )) /2 . 3C 3
(C (C C I C

2 1
016=0( a+oo -

1(C 
1/211

- where

0 1= [-- C21 and C12 = [-- C2]

and where C6 and C20 are constants of integration.
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VI. Trajectory States of Validity for the Non-Rotating

Earth Equations of Motion

Introduction

In Section IV, the rotating planet terms in each of the

five equations of motion for Earth atmospheric entry were

examined. The dq/dh equation of motion for a non-rotating

Earth was found to be never valid for the investigated

ranges of inclination angle and speed. Because of this, a

solution was developed for the dq/dh equation of motion for

the three-dimensional lifting atmospheric entry of a

rotating, spherical Earth. This was accomplished in Section

V by treating atmospheric entry as a boundary layer problem

* and applying the method of matched asymptotic expansions.

In Section IV, trajectory states were found to exist

where some of the non-rotating Earth equations of motion are

valid for a rotating Earth. The dD/dh, da/dh, and dI/dh

non-rotating equations of motion were all found to be valid

for the same entry trajectory states. Other, independent

trajectory states were found to exist where the du/dh non-

rotating equation of motion is valid for a rotating Earth.

In this section, these trajectory states are examined in

more detail for the du/dh and dI/dh equations of motion.

Plots of the Rotate term solutions to these equations are

generated for a large range of realistic values of u, h, a,

y, and I. Trends in these solutions are discussed and the
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non-existence of overlapping trajectory state solutions

between the du/dh and dI/dh Rotate equations is verified. A

few methods to estimate solutions to the du/dh and dI/dh

Rotate equations are also presented.

Solutions to the du/dh Rotate Equation. In Section IV

it was found that the rotating planet terms in the du/dh

equation of motion are

du r i 1/2
duI 4 Eu(l+h)I cos

IRotate = -o

-2E (1+h) 2 -c s a s i n 2 I s i n a (61
2 tanI

Setting this equation equal to zero and solving for flight

path angle gives solutions for trajectory states where the

*rotating Earth terms in the du/dh equation of motion are

zero.

[ -Ccosas
i2

-"-y = tan-' -osinasin I(62

Rotate =0 t 2co 
(6.2)

S3(+h) 
1/2

S where C = (6.3)

Solutions to the dfl/dh, da/dh, and dI/dh

Rotate Equations. In Section IV, the solutions for the

Rotate term expressions were found to be identical for the

da/dh, dfl/dh, and dI/dh equations of motion. This result

simplifies the search for trajectory states where the non-

rotating Earth equations of motion are valid for a rotating

ON Earth. Instead of detailed examination of the solutions to
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all three of the da/dh, dfl/dh, and dI/dh Rotate term

expressions, examination of only one of them is required.

In this section the solutions to the dI/dh Rotate term

expression are examined. From Eq (4.13)

dl (1+h) ]'/2 cosasinl
dh Rotate 2[k2  tan7 (cosatan7 - sina)

- (l+h)2 'cosa sinacoslsinl (6.4)

2 utan7

Setting this equation equal to zero and solving for flight

path angle gives solutions for trajectory states where the

rotating Earth terms in the dI/dh equation of motion are

zero.

:1 = tan-1 sina + Ocoslsin(6

tO i Rotate = 0 2co- ]
Non-Existence of Overlapping Soluttifns to the du/dh and

dI/dh Rotate Equations

To verify the non-existence of overlapping solutions to

the du/dh Rotate and dI/dh Rotate equations, Eqs (6.2) and

(6.5) are equated.

tan-I [-Ccosasinasin2 1]  tan-i [sinq + CcosIsina]

Simplifying

-Ccos 2asinasin I = cosIsina + Ccos Isina (6.6)
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A trivial solution to this expression is given by sina = 0

The non-trivial solutions to Eq (6.6) are found by dividing

by sina and then solving for cosa.

1 /2
cosa =- cos 2I] /sinI (6.7)

13 /2

where C = [JI+h E

For real solutions to exist for Eq (6.7), the following

condition must be true:

cosI 2(68CO + cos I < O (6.8)

Since values of non-dimensional altitude and speed ratio

are never negative, C always has a positive value. The term

cosI is never negative for prograde entry trajectories.

Hence, the condition given by Eq (6.8) is never satisfied

and overlapping solutions to the du/dh and dI/dh Rotate

equations do not exist.

Graphical Trajectory State Examination

In the following pages, the trajectory states which

occur when the Rotate equations are zero are examined in

more detail. This is equivalent to finding trajectory

states where the non-rotating Earth equations of motion are

equivalent to the rotating Earth equations of motion for

lifting atmospheric entry. Solutions for 7 are examined

which result from placing a wide range of possible
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combinations of u, h, a, and I into the Rotate solution

equations, given by Eqs (6.2) and (6.5), for the du/dh and

dI/dh equations of motion. These solutions give trajectory

states for which the non-rotating equations of motion are

perfectly valid for rotating Earth entry analysis. This

validity is dependent upon the physical characteristics of

the planet under consideration, namely E and the type of

trajectory being analyzed; validity is not directly

dependent on any of the vehicle's physical characteristics.

Determination of the validity of the non-rotating equations

of motion for planets other than Earth could be undertaken

in a similar manner as the analysis given in this section.

A computer program was developed to solve Eqs (6.2) and

*(6.5) for a large range of u, h, a, and I. Plots of

families of curves of 7 versus I are presented for various

ranges of a and for realistic combinations of u and h.

Appendix E presents three example Earth atmospheric entry

trajectories to give an indication of what the dimensionless

.variables u and h are in relation to more conventional entry

trajectory parameters such as Mach, altitude, and velocity.

Most current and planned lifting entry vehicles have

trajectories which fall within the ranges of u and h given

by these examples. The realistic combinations of u and h

discussed in the following pages are derived from liberal

estimation of their ranges in these example trajectories.

Values of u selected for investigation ranged from circular
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orbital velocities to low supersonic speeds where terminal

maneuvers, such as landing approaches, are usually

initiated. Realistic values of non-dimensional altitude

corresponding to these values of speed ratio were used in

this analysis. Values of argument of latitude at epoch and

orbital inclination angle had ranges of 0.0 < a < 360

degrees and 0.5 < I < 75 degrees, where most atmospheric

entry occurs. Because of the large number of plots needed

to display data trends, some of the plots which are

discussed in this section are contained in Appendix F. In

all the plots referred to in this section, a, the argument

of latitude at epoch, is referred to as "Alpha". All values

of -y, a, and I given in these plots are in units of degrees.

Trajectory States of Validity for the du/dh Non-Rotating

Earth Equation of Motion. Trajectory states are

presented below where the non-rotating Earth du/dh equation

of motion is valid. Trends in these solutions to Eq (6.2)

are discussed.

Typical Solution Observations. Figure 13 is a

typical plot of solutions to Eq (6.2) of flight path angle

versus orbital inclination angle. For constant, non-zero

values of argument of latitude at epoch, 7 decreases as I

increases. Values of flight path angle also decrease in

this plot as a increases. In addition, as a increases for a

constant I, the change in 7 decreases, especially for large

inclination angles.
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Effect of h Variation. Holding all other variables

constant, the effect of change in non-dimensional altitude

on these solutions is negligible. Figures F1 and F2 in

Appendix F present results for values of h higher and lower

than in Figure 13 for the same values of u and a.

Comparison of Figures F1 and F2 indicates that only

extremely small changes in flight path angle occur for this

large change in h. This ineffectiveness of h variation on y

can also be intuitively seen from examination of Eq (6.3).

Note that for all realistic values for non-dimensional

altitude, 1.0 is much larger than h in the expression

(1 + h)3/2

Effect of u Variation. Figures F3 and F4 present

solution results for values of speed ratio higher and lower

than in Figure 13 for the same range of values of argument

of latitude at epoch. Comparison of Figures 13, and Figures

F1 - F4 demonstrates that large changes in flight path angle

occur for this large range of u. As u decreases, the

4magnitude of 7 increases for curves of constant a

Effect of a Variation. The trend of the effect of

variation in argument of latitude at epoch can be seen by

review of F:gures 13 and Figures F1 - F4. For the range of

values of o in these plots, 7 and the change in 7 decrease

as a increases along lines of constant inclination angle.

These trends are more prominent for large values of I. The

a terms in Eq (6.2) are
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- cos(a)sin(a)

Examination of this term and the properties of the inverse

tangent function in Eq (6.2) indicates the solutions given

in Figure 13 will be symmetric about a = 0 and 180 degrees

and these symmetric solutions will repeat about

*90 - a (degrees) for * a

Figures 13, F5, F6, and F7 demonstrate these

observations.

Trajectory States in Three Dimensions. Figures 14 and

15 present three-dimensional plots of the trajectory states

of validity for the du/dh non-rotating Earth equation of

motion. Solutions to Eq (6.2) are plotted here for flight

path angle versus orbital inclination angle and argument of

- latitude at epoch. The solution surfaces in these figures

are constructed of lines of constant a and lines of constant

flight path angle. These contours of constant 7 are drawn

for changes of 7 of 0.165 degrees in Figure 14 and changes

of 7 of 1.04 degrees in Figure 15. In both of these plots,

values of flight path angle are near zero for small

inclination angles and for very small values of argument of

latitude at epoch. Although Figures 14 and 16 present

solutions to Eq (6.2) for vastly different values of speed

ratio, the two plots look almost identical; only the scale

of flight path angle values differs.
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Trajectory States of Validity for the dI/dh Non-Rotating

Earth Equation of Motion. Trajectory states are given below

where the non-rotating Earth dI/dh equation of motion is

valid. Trends in these solutions to Eq (6.5) are discussed.

Typical Solution Observations. Figure 16 is a

typical plot of solutions of flight path angle versus

orbital inclination angle. For constant non-zero values of

argument of latitude at epoch, 7 increases as I increases.

Values of flight path angle decrease in this plot as values

of a increase.

Effect of h Variation. Holding all other variables

constant, the effect of change in non-dimensional altitude

on these solutions is negligable. Figures F8 and F9 present

solution results for values of h higher and lower than in

Figure 16, and for the same values of u and a. Comparison

of Figures F8 and F9 indicates that only extremely small

changes in 7 occur for this large change in h. As in the

case for the du/dh Rotate solutions, this ineffectiveness of

h variation on 7 can also be intuitively seen from

examination of the expression for C in Eq (6.5).

Effect of u Variation. Figures FIO and Fll present

solutions for values of speed ratio higher and lower than in

Figure 16 for the same range of values of argument of

latitude at epoch. Comparison of Figures 16, F1O, and Fll

indicates that large changes in 7 occur for this large range

of u. As u decreases (along with the ineffectual non-
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dimensional altitude), values of flight path angle increase

for curves of constant a.

Effect of a Variation. The trend in the effect of

variations of argument of latitude at epoch can be seen by

review of Figures 16 and Figures F8 - Fl. For the range of

a in these plots, 7 decreases as a increases for constant I.

This change in flight path angle is more prominent for small

values of speed ratio. Change in the range of a can also be

easily seen analytically. The a terms in Eq (6.5) can be

written simply as tan(a) Examination of this term and

the properties of the inverse tangent function in Eq (6.5)

indicates the solutions given in Figure 16 will be symmetric

about a = 0 and 180 degrees, and that these symmetric

solutions will repeat about

a ~180 (degrees) for * a

Figures 16, F12, F13, and F14 demonstrate these

observations.

Trajectory States in Three Dimensions. Figures 17, 18,

and 19 present three-dimensional plots of the trajectory

states of validity for the dI/dh non-rotating Earth equation

of motion. Solutions to Eq (6.5) are plotted here for

flight path angle versus orbital inclination angle and for
JP

argument of latitude at epoch. The solution surfaces in

these figures are constructed of lines of constant flight

path angle and lines of constant argument of latitude at

epoch. Figures 17, 18, and 19 display plots generated for
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successively decreasing values of speed ratio. Although

these values of u differ greatly, the solution surfaces are

very similar in appearance.

Solution Estimation Methods

Some effort was spent in developing the computer program

to solve Eqs (6.2) and (6.5) for large ranges of values of

speed ratio, non-dimensional altitude, orbital inclination

angle, flight path angle, and argument of latitude at epoch.

To rapidly assess the validity of the non-rotating Earth

atmospheric entry equations of motion for a particular

trajectory state, there is an advantage to having a quick

estimation algorithm. On the following pages, methods are

presented to estimate some solutions to the du/dh and dI/dh0

Rotate expressions given by Eqs (6.2) and (6.5),

respectively.

Estimates to the du/dh Rotate Solutions. Figure 20

presents a plot of trajectory state solutions to Eq (6.2),

the du/dh Rotate equation. The solution surface in this

figure is onstructed of lines of constant flight path angle

and lines of constant argument of latitude at epoch. Two

separate estimations of solutions to Eq (6.2) can be made

with plots such as Figure 20. The first is the

approximation that values of flight path angle in the

triangular plane (ABC) of trajectory states have some

constant, near-zero value. In general, this is a good

approximation for y, especially for high values of u. The
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ABC plane of "constant"7 is bounded by

05

0.0 < a < 45.0 degrees
0.5(1( <75.0 degrees

Line AB: a = -(0.60403)1 - (45.302) degrees

Therefore, the conditions for assuming flight path angle has

some near-zero value are given by

(.02207)a + (.01333)1 ( 1.00 (6.9)

and by the ranges of inclination angle and argument of

latitude at epoch given above.

The maximum error in assuming 7 = 0.0 degrees in the

ABC plane in Figure 20 is approximately equal to the value

of 7 corresponding to the second flight path angle contour

0O from the top of the plot. This maximum error in flight path

angle is about 7 = -0.56 degrees for this plot.

Application of this estimate to the corresponding ABC planes

in Figures 14 and 15 give maximum errors in flight path

angle of about 0.30 and 1.5 degrees, respectively.

*An estimate of a non-zero value for flight path angle in

the ABC plane can reduce these maximum errors. Assuming the

value of 7 in this plane is equal to half the 7 value of the

second constant 7 contour in Figure 20 produces an estimated

flight path angle of -0.28 degrees with maximum error of

0.28 degrees. Likewise, estimates of 7 = -0.15 degrees

and y = -0.75 degrees in the ABC planes in Figures 14 and
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15 give maximum errors in flight path angle of about 0.15

degrees and 0.75 degrees, respectively.

Another approximation to the solution of Eq (6.2) is

given by the simple assumption that flight path angle has

near-zero values for small values of inclination angle.

Maximum error in an estimated flight path angle is dependent

upon the chosen value of inclination angle for this

approximation. For example, assuming 7 = 0.0 degrees for

I < 15.4 degrees invokes a maximum error in flight path

angle of about 0.28 degrees in Figure 20. Assuming y = 0.0

degrees for I < 29.2 degrees produces a maximum error in

flight path angle of about 0.56 degrees in Figure 20.

An estimate of a non-zero value for flight path angle in

the ABC plane can reduce these maximum errors for the same

range of inclination angle. Assuming 7 = -0.14 degrees

for I < 15.4 degrees produces a maximum error in 7 of

about 0.14 degrees in Figure 20. Estimation of a flight

path angle value of -0.28 degrees for I < 29.2 degrees

gives a maximum error of 0.28 degrees.

The accuracy of both of these estimations for solutions

to the du/dh Rctate equation is heavily dependent on the

value of speed ratio for a given trajectory state and the

estimate of flight path angle.

Planar Estimation to dI/dh Rotate Solutions. A planar

estimation method was developed to obtain rough estimates of

solutions to Eq (6.5). For given values of speed ratio, the
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following relations give an estimate of the planar surface

of solutions that appears in Figures 17 - 19.

ab
- -= ') - (I - 10) (6.10)

where

c = -89.40 degrees

I = 52.65 degrees0

ao -21.00 degrees

and values of a, b, and c are polynomial functions of u,

given by

a = (106.701) - (27i.537)u + (1209.57)u

- - (1840.30)u
3 + (895.29)u4

0

b = (5.657) - (90.002)u + (401.76)u

34
* - (611.66)u + (297.66)u4

71 = (-26.104) + (81.784)u - (365.55)u2

+ (556.7 7)u - (271.00)u4

Examples of planar estimates of solutions to Eq (6.5),

generated by the above method, are presented in Figures 21 -

23. These estimated solutions correspond to the numerically

generated solutions presented in Figures 17 - 19. A more

exact method to estimate solutions to Eq (6.5) is given by a

",' three-dimensional curvefit algorithm described below.
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Polynomial Curve Fit Estimation to dI/dh Rotate

Solutions. Using polynomial least squares curve fitting

routines, a curvefit to the solutions of the dI/dh Rotate

equation was developed for ranges of inclination angle and

argument of latitude at epoch of 0.5 < I < 75.0 degrees

and -45.0 < a < 0.0 degrees. This curvefit is three-

dimensional in the sense that it predicts solutions for 7

from Eq (6.5) for various I, a, and u. Since changes in h

were shown to produce negligable changes in -y, h was not

included in the fit. The resulting algorithm produces

accurate solution estimates. Figure 24 presents numerically

generated values of 7 versus I, and Figure 25 presents

corresponding curvefit generated estimations of 7 versus I

for the same values of a, u, and h.
@
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.____VII. Conclusions and Recommendations

Conclusions

This effort investigated the validity of the non-rotating

planet assumption for three-dimensional Earth atmospheric

entry. This study was limited to entry at orbital

inclination angles between 0.5 and 75.0 degrees, where most

Earth atmospheric entry occurs, and vehicle speeds ranging

from circular orbital velocities to low supersonic speeds,

where terminal maneuvers (such as landing approaches) are

usually initiated. Constant lift-to-drag ratio and

ballistic coefficient were assumed along the vehicle's

flight path. Validity results are coordinate dependent

* since singularities exist in the equations of motion. On

the basis of this investigation, the following conclusions

are made:

1. As a set, the five non-rotating planet equations of

motion (Section IV) are invalid for Earth atmospheric

entry. Hence, the non-rotating Earth assumption,

common in analytical entry analyses, produces

incorrect entry trajectory results. Solutions to the

non-rotating Earth equations of motion were derived

from expansions of the rotating Earth equations of

motion using the method of matched asymptotic

expansions. These solutions are given by Eqs (5.86)

(5.90).51



2. The dq/dh equation of motion for a non-rotating Earth

is never valid for the ranges of inclination angle

and vehicle speeds mentioned above. Hence, a

solution, Eq (5.95), was developed for the dq/dh

equation of motion for three-dimensional lifting

atmospheric entry of a rotating spherical Earth.

This solution is valid for the entire non-dimensional

altitude domain and it accounts for the Coriolis

acceleration on the flight vehicle. The method of

matched asymptotic expansions was employed in this

derivation.

3. A variety of realistic Earth atmospheric entry

trajectory states exist where some of the non-

rotating equations of motion are valid for a rotating

Earth. The dD/dh, da/dh, and dI/dh non-rotating

equations of motion are valid for the same entry

trajectory states for a rotating Earth. Other

trajectory states exist where the du/dh non-rotating

Earth equation of motion is valid for a rotating

Earth. These two sets of trajectory states do not

overlap for the investigated ranges of entry

inclination angle and velocity.

4. A number of trajectory states are presented where the

du/dh non-rotating equation of motion and the dD/dh,

da/dh, and dI/dh non-rotating equations of motion are

valid. Holding speed ratio constant, realistic
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variations of non-dimensional altitude causes

negligible changes in these states of validity. The

magnitudes of the flight path angles where these non-

rotating Earth equations of motion are valid increase

as speed ratio values decrease. Trajectory states of

validity are symmetrical about various values of

argument of latitude at epoch for the non-rotating

Earth dI/dh and du/dh equations of motion. Two

methods to estimate flight path angle values where

these equations of motion are valid are also

presented.

Recommendations

Based on the observations of the assumptions and of the

findings of this investigation, the following

recommendations for further study are proposed:

1. Investigation of the validity of the non-rotating

planet assumption for three-dimensional Earth

atmospheric entry was limited to orbital inclination

angles between 0.5 and 75.0 degrees. Further

investigation should be undertaken for other ranges

of inclination. Near-polar and negative inclination

angles would be of particular interest.

2. Further study of the trajectory states where the

du/dh and the dO/dh, da/dh, and dI/dh non-rotating

Earth equations of motion are valid is warranted. An
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attempt should be made to construct entire

' trajectories from these trajectory states. If

successful, a reduction in the complexity of the

equations of motion could be made for certain

trajectories and possibly even specific trajectory

classes. This reduction would allow the non-rotating

planet equations of motion to be used in place of the

more complex rotating planet equations of motion,

causing past analytical studies that utilized the

non-rotating planet assumption to be valid for these

trajectories. Current trajectory optimization

computer programs consume many valuable hours of

computer run-time, iterativly integrating the

rotating planet equations of motion. Optimization

computer programs such as the Air Force Flight

Dynamics Laboratory's ENTRAN (ENtry TRajectory

ANalysis) and OTIS (Optimal Trajectories via Implicit

Simulation) codes, could greatly benefit from a

reduction in the complexity of the rotating planet

equations of motion.

3. The method of matched asymptotic expansions has

proven to be a powerful tool in the development of

solutions to boundary layer problems such as

planetary atmospheric entry. Further application of

this method should be undertaken to obtain a full set
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of solutions to the equations of motion for three-

dimensional lifting atmospheric entry for a rotating

Earth. This activity would entail finding solutions

to the complex differential equations given by Eqs

(5.20) - (5.24) and Eqs (5.46) - (5.52), and then

matching and forming composite solutions from these

results.
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Appendix A

Derivation of Equations Relating 0, , * and a, fl, I

Using Spherical Trigonometric Relationships

This appendix presents the basic derivation of equations

relating 0, #, # and a, n, I using trigonometric

relationships. In this paper, the planetary model is

spherical and hence the spherical sine and cosine laws can

be successfully applied.

Figure Al depicts a reference spherical triangle. For

clarity, the angles between the curved line segments are

called interior angles whereas the angles formed between the

unit vectors, ri, rj, and rk' are termed exterior angles.

*Hence, A, B, and C are exterior angles and a, b, and c are

interior angles in Figure Al.

The sine law for spherical triangles states that the

ratio of the sine of an interior angle to the sine of its

opposing exterior angle is constant.

sin(a) sin(b) sin(c) (A1)
sin(A) - sin(B) = sin(C)

The cosine law for a spherical triangle states that the

cosine of an interior angle is the sum of two products. The

first product is formed of the cosines of the other two

interior angles; the second product is formed of the sines

of the other two interior angles and the cosine of the
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Figure Al. Reference Spherical Triangle

opposing exterior angle. The cosine law is given by the

following expression.

cos(a) = cos(b)cos(c) + sin(b)sin(c)cos(A) (A.2)

Eqs (A.1) and (A.2) are used to relate the variables 0,

b, , a, I, and I. From comparison of Figures 11 and 12

(Section II) to Figure Al, the exterior and interior angles

of the formed spherical triangle are

Exterior Angles Interior Angles

A=-IJ a = */2 -

B b= I

C a c =w/2
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where I
0 -E longitude

latitude

- heading angle

a =argument of latitude at epoch

S--longitude of the ascending node

I inclination angle

Application of the sine law to these variables gives the

following:

sino sina sin (0 lsinI sin(w/2) sin(w/2 - b)

Since

. cosO = sin( - 0) and sin( ) = 1

sina = sin(6 - 0) (A.3)
COSI

sinO = sinlsina (A.4)

Application of the cosine law to the inclination angle

gives the following.

cos(I) = -cos( )cos(3 - p) + sin(!)sin( - O)cos(o)

Since sin# = cos( - ) and cos(2) 0

cos(I) = cos(O)cos() (A.5)

Another application of the cosine law gives

cos( ) -cos(I)cos(! - ) + sin(I)sin(2 - #)cos(a)
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which reduces to cos(I)sin(o) = sin(I)cos(#)cos(a)

or cosa = tano (A.6
tan I

Yet another application of the cosine law gives

cos(- -cos( )cos(I) + sin(!)sin(I)cos(O -()

sin(O) = sin(I)cos(6 -11) (A.7)

Some other relationships can be found that are coupled

to Eqs (A.3) - (A.7) and are useful for some occasions.

Substituting Eq (A.5) into Eq (A.6)

cosa = cosocos(6 - 0) (A.8)

Substituting Eq (A.5) into Eq (A.3) gives

si"6 =tan (A.9)l@since n ) -tanl

Rewriting Eq (A.6) and substituting in Eq (A.5) gives the

expression

cosasinl
sin(O) - cos

Substituting Eq (A.4) into this result

sin(#) = tano (A.10)
.tana

The relations given by Eqs (A.3) - (A.10) are used in

Section III to transform the equations of motion from terms

of latitude, longitude, and heading angle to terms

containing orbital inclination angle, longitude of the

ascending node, and argument of latitude at epoch.
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Appendix B

Some Common Expansions

This appendix presents the Taylors series expansion

formula and some basic expansions of common functions that

appeared in the equations of motion.

The Taylor series expansion of f(x) about x = x0 is

given by the following expression:

S(x - x 0 )n
f (X) = f(n (X 0 )  n!

n=o

f)d n f(x 0) f
where f(n) ( 0  _nd (x 0 ) = f(x )

dxn

Application of this equation to various functions within

the equations of motion was facilitated with the following

two trigonometric identities:

cos(a + Eb) = cos(a)cos(Eb) - sin(a)sin(Eb)

sin(a + eb) = sin(a)cos(eb) + cos(a)sin(eb)

The Taylor series expansion of the cosine and sine

functions gives the following familiar expressions:

0 0 2 2 4 4 6 6cos(b) b - b E
- 0! 2! + 4! 6! +

Hence 2Icos(Eb) = 1 + O(E 2 )

0.%
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sin(Eb) - e 1 b  E3 b3 
+ 

5 b 5  Eb 77 I
" In(E3) + 57!+ "

Therefore

sin(Eb) = eb + O(E 3 )

As an example, the following expansion of the cosine

function is derived to 0(E 
2).

cos[a + Eb + E2c] = cos(a)cos [Eb+E2c] - sin(a)sin[Eb+E 2c]

= cos(a)[cos(Eb)cos(E 2c) - sin(Eb)sin(E2c)

- sin(a) [sin(Eb)cos(E2 c) + cos(Eb)sin(E 2 c)

= cos(a) - Ebsin(a) + 0(E 2 )

I. The following relations were obtained through

application of the Taylor series expansion:

cos[a + Eb + O(E)J : cos(a) - Eb'sin(a) + 0(E 2 ) (B.1)

sin a + Eb + O(E2) = sin(a) + Eb'cos(a) + 0(E 2 )  (B.2)

" ( 1 2 +0 ) (B.3
tan a + Eb + 2 = tan(a) + Eb + O(E 2  (B.3)

cos (a)

[tan a 4E + UIE 1 Eb + O(E 2  (B.4)

t+( = ana- -sin2 (a)

r~r 02\1 cos~a% 2sin a + Eb + -(
a  Eb- 2 + O(E (B.5)

sin (a)
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1

0(e2)]o co(a)
Cosia *+ Fb+ =( Co () -Cos 2 (a) + 0(E) (B. 6)

a + b + 0(E') = 1 2b + 0( 2 ) (B. 7)
a

a + Eb + 0(E 2 -1 /2 = a1 - -- a3/2 + O(E ) (B.8)

2I

5.1I
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I Appendix C

Derivation of Solutions to Selected Outer Expansion

Differential Equations

Outer Expansion E0 Terms

The F0 terms of the outer expansions found in Section V

are as follows:

du -u0 0 .1dh - (1+h) (C.I)

dq0  q q

dh - (lh)L u I (C.2)
0

dl

0dh -o (C.3)

dQ

dh - o (C.4)

0 1 (C.5)
dh = (l+h)tan70

Solutions to this set of differential equations are

derivej below.

du/dh Equation Solution. Rearranging Eq (C.1) gives

dud0 -dh0 or ln(uo) = -ln(l+h) + Ku0 - (1+h)0

Solution:

u0 (1+h) = C1  (C.6)
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dq/dh Equation Solution. From Eq (C.2)

dq0 qO 2

dh -(l+h)[ u ]
0

Application of Bernoulli's equation to this

differential equation makes the solution derivation

straightforward. Bernoulli's equation is given by

y +P(x)y = Q(x)y n,

This form gives the solution (Beyer, 1984:315)

vexp[(l-n)fe(x)dx] = (1-n){Q(x)[(l-n)fP(x)dx]dx + C

where v = 1-n and n 1

dqOn
Hence, dh + P(h)q = Q (h) n 

I
where n = 3, v = -2

1___ 1 _ 1

P(h) - (l+h) ' and Q(h) - +h)( 1 + h ) °  ( l1 h )

Solution: d(1+h) - ln(l+h)

e- = nFex2 p2In(l+h)]dh + K

II [q0 (l~h)] -2 (1+h) - 2 dh + K
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Integrating gives

1 2 )2 (.7)

2 - (1+h) - C2 (1+h(

or
-1 /2

or q= (14h) - 02 (1+h (C.8)

dI/dh Equation Solution. From Eq (C.3)

dh -0 ; I = C5( .9)

dfl/dh Equation Solution. From Eq (C.4)

dfl0

dh 00 = C4 (C.I)

da/dh Equation Solution. From Eq (C.5)

dcz0 1
dh (1+h)tanTy

By definition, q = cos 7  The expansions of q and cos7 are

given by the following expressions:

q0i
+ Eq 1 + 0(E) = cosIjYO+ E-71 + 0(E2)J

- cosT0 - E-71 sin 0 + 0( )

By noting the order of E in this equation, it can be seen

that

qo = C0°7 0  (c.11)

and q, = -y sinyo (0.12)
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From Eqs (C.11) and (C.12), an expression is found for the

tangent of yo

(1 - /°270 ) 1 2  (1 - 2 ) 1 / 2
tanT0 = cosYO0 q

tan = / 2

tan 12 ](C.13)

where % was previously found to be

-1/2
= (1h) - 02 (1 4h)2 (C.14)

Therefore

f[ (l+h) 0 (1+h) 2 - /2 dh
da 0  C2 (+h)

Making x = (1+h) causes dx = dh and allows this integral

to be rewritten as

a0= "x - C 2 x2 
-x

The integral is now in the form of

-. (dx= (C.15)

where X = a + bx + cx2  f 4ac - b2 , k = 4c/f,

% a = -1, b =2/C ,and c = -C,

% 2II.



f 4 2 and2 C /(C 2C 1)
2 1 2 1 2 1 2

C1

The solution to Eq (C.15) is

a dh /2 (-a) 1/2 Csl [(bx + 2a)/{ixI(-q)1/2}] + C

fX (X)1/

Hence

C -1 2x/C - 2 1a0= cosi + C
[21xl(C 2 1

This solution can be expressed in either of the following

two forms:

-]

1 C /(1+h) I+
a° =- cos 20 / (0.16)

(1 2C 2

C 2 2)

F2 1/2
or uo = 1 + cos(a0 - C ) "  (C.17)-

Outer Expansion EI Terms

The E1 terms of the outer expansions found in Section

IV are as follows:

du -u /2

dh (l+h) 4 3u0 (1+h) cosl0  (C.18)

dI 2 [3(1+h) /2Cosa 0sinI0

dh - u2 /2_ranT0 (cosatan O  sina O )
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da _ __1__ tana dI

dh -(+si
2  tanl dh I(0. 20)

doh~i 2y

or dh -(1+sh) sin 270

- 0[] 0 0 (cosa0 tan70 - s ina0 )

d(I tana dI
h 7- 0d 1 (0. 21)

0

dO 2r3(1+h) 1 1/2 sina
or dh0 [ (cosa tan70  - slflck

00

-2q 0 csI [3(1+h) 1/ (0. 22)

In order to find the solution to the dq1 /dh equation, a

solution to Eq (0.18), the du /dh equation, must first be

found.

du/dh Equation Solution.

du -U1  4[u/2

=h (1+h) - 4 [3u 1J ) cosl 0

Since U0 (1+h) =C I and I = C 5 we find that
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du u/

dh + (l+h) - -4cos(C 5 ) (3C 1)/2

This differential equation is in the form of

dx + P(x)y = Q(x)

This form gives the solution

y,exp[f P(x) dx] JQ(x) [P(x)dx]dx + C

For the du /dh differential equation

y = Ul, x =h,

P(h) - (l+h) and Q = _ 4cos(C ) .(3C )/2

dh

* exp[f(l-h)] - exp[ln(]+h)] = (l+h)

(l+h)u = Qf(l+h)dh = )2 + C

Solution:

C
u, = (1+h) 2(3C /2 cos(0 )(l+h) (C.23)

dq/dh Equation Solution.

22

dq1  qO q 2u, 2q, q __O

dh (+h) u 2 u (1+h)

-q o~ 0 (0.22)
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where u0 , u, and I0 are given by the following equations:

u0 = C /(l+h) (C.6)

1

0 1 /2

u - - 2(3C1 ) cOs(C )(l+h) (C.23)I (1+h) 15

10 =0 (C.9)

Substitution of Eqs (C.6), (C.9), and (C.23), into Eq (0.22)

gives

dq I q 1 q0  q0
3 C6  qI q 2 q, 1/2

dh 2 C 2 (l+h) +  C - (1 'h)
1 C

203
+ C (301) /2(1+h)2 cos 5  (C.27)

[2 2 -1/

where q0 = [I l+h) - C2 (l+h)2] - 1/2 (C.8)

Eq (C.8) can be substituted into Eq (C.27) to produce a

complicated integral with h. However, for typical lifting

earth atmospheric entry, altitudes of interest range from a

minimum of 0 to a maximum of about 100 nautical miles. This

is equivalent to a range of non-dimensional altitude of

about 0.0 < h < 0.029 The maximum h encountered for a

typical lifting entry trajectory for Earth is thus always

less than the small parameter, E, allowing h to also be

utilized as a small parameter in the outer expansion

differential equations. The use of h as a small parameter
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considerably simplifies the derivation of solutions to some

of the first order E differential equations.

Expanding the terms in Eq (C.27) for small h and

neglecting the resultant terms of 0(h 2 ) greatly simplifies

the analytical integration of this equation. One term that

appears often in Eq (C.27) is q0" Rewriting Eq (C.8)

2h- /2

= + 2  2 2I I

A condition allowing the expansion of this equation for

small h is given by

2 (l+h) > C (l+h) 2

a2

This condition can be easily seen to always hold true for

any values of C ,C, and h.
4, 1

Expanding Eq (C.8) for small h using a Taylors series

approximation gives

=2 - h[1 - -C][2 - 202] + O(h ) (C.28)
I C I

Some other terms appearing in Eq (C.27) are likewise

expanded:

SI/2
q00 J + O(h ) (C.29)q0l~) I+2 C Cc  2 C CC
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- hiC + 0(h 2' (C.o)

C 2

=O - 0]2 3h[ -C 2 ] [c - 02] +/ 0 (h) (0. 31)

Defining two new constants, both dependent upon C i and C2,

simplifies Eqs (C.28) - (C.31).

let c [-- ] and 01 = - 0](0.32)
C I

?w

With substitution, Eqs (C.28) - (C.31) become

O h
qo= ( 1) (1 /2 + 2 + O +h ) (C.33)

1.1

q= ) -1/2+ h + 0(h 2 ) (C.34)
01((C / 2

20 h
q0  C (0cl2 +0O(h) (0.35)

30h

qO 3 (CI )/2 + O(h 2 ) (0.36)(C

Two other terms in Eq (C.27) can also be expanded.

3 2 h r 30121

q (+h 11) 3/2+ ( 322+2 - + (h) (C.37)

(l+h) - -q 1 + q h + O(h ) (C.38) p
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Substitution of Eqs (C.33) - (C.38) into Eq (C.27) gives a

solvable expression for dq /dh.

dq1
dh q q1 C1 6 + q 1 h + C4 h + C1 3  (C.39)

where

2 1
016 C (C 1/2 0(.40)

-~2 1 1 11

212~l1
C1= c - + )1/2 (C.41)

(C)/

300 1

C = 6 12
4 ) )5/2(C (C

C 
/2S 1

2cos(• _ 1 (C.42)
N L CJ

11 31 1/2 3C
2cos(C 5 1 C 0 20 3/2 (0.43)

1 11

The differential equation given by Eq (C.39) is in the form

dy + P(x)y = Q(x)dx

This form gives the following solution

y.exp[JP(x)dx] =fQx)[FJS(x)dx]dx + 0

For the dq /dh differential equation y = q, x h,
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P(h) = - C16 - C h , and Q(b) = C13 + C h

With substitution

exp[fP(h)dh] = exp h )h2] ex K0  h + O(h 2)]

Therefore

q I exp[-cfrh] = C 13 exp[-C, 6 h]dh + 4 {h[exp(-C 1 6 h) dh + 020

and the solution to the dq I/dh equation is given by

1 13 4 4 htc" _ exp[-C, h] (C.4)-
Iq 6 ( 2 h - C2 (044

.The constants 013, C14 and C16 are given by Eqs (C.43),

* (C.42), and (C.40), respectively. Because h terms are

neglected, C is dropped from the solution. Hence, a

solution for q has been found as a function of two

constants of integration, C6 and C0 and the constants C 13'

C and C which are dependent upon C and C from the
S14 '16 '12

relations given in Eq (C.32).
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Appendix D

Derivation of Solutions to Selected Inner Expansion

Differential Equations

Inner Expansion - Terms

The E0 terms of the inner expansions found in Section V

are as follows:

D 1
0u _ -2Be- 1__ cos (D.1)

dqo  CL .

d CD Be- o (D.2)

=-D

dI0  CL  sinucosa0

B- (D.3), dC - D  cos-yos inT0

d) C Lsinasina 
0o . Be - . s (D.4)

d = CD cos70 sin70 sinI)

da C sinosinaod L -*0 (D.5)
D tan 0 sino 0 cosI0

Solutions to this set of differential equations are derived

below.

dq/dE Equation Solution. From Eq (D.2)

dq0  CL B-
= - BeCcosa

This is a very simple integration by separation of

variables. The constant of integration is K
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C Be-csa + K (D.6)

du/dh Equation Solution. From Eq (D.1)

du 0~l 1 sdu 2u Be + .cos_
dC 0 sin7 o +D COS7 0

Previously it was seen that q= cos-Y0

dq% d 0  dy0  C B - Cosa
Therefore, dC - sn70 da and d - si n

The du/dh equation can be rewritten

ri = [2u Be-L.Aldud0  0 0  dC d-y0

+ r-2U Be- C L 1] d% "

D qo d- dqO

ln1 f .2o~- Be-C cosa -y
0n(u) = D2uBe- i]B 0  sin70- d0

+ C~L cosa +  CL _-
+ f[-2u0 Be-' D co] CK D Be-CcOsU]d%

After reducing, this equation takes the form

ln(u -C d O dqO -CoD2 s + 21 n(,°y) + ln(K )In~uO  = LOa + f- CLOa

Solution: Uo K q [(.277)

dI/d( and da/d( Equations. From Eq (D.3)
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I dI CL sinacsa°
-e0 -

d 0D c0o s 1s i nf°

From Eq (D.5) da 0 CD Be-" ta

D jtani sin70 cosI0

dI dl dC tanI

By the chain rule d1 0 - d1. d °  tan 0
da dC da tana000

With separation of variables, this integration simply

produces

sina 0 sinl0 = sinK4  (D.8)

or

€, sinK4

I =sin- --in- (D.9)
0 [slfl 0

0

da/dC and dfl/dC Equations. From Eq (D.5)

da C sinusina0

dC C D Be tanl 0 sino 0cosl0

C_ sin0sina0From Eq (D.4) df - CL o Be ssint n 0d C D cos7Y0 sinyosinI0

da 0  da ° dC
Chain rule - - -. cosI

dO 0 - d d1 0  0

Substitution gives

:-o -co [sin i =
dO" d 0  Co si ' I--- O 0 [sina 0 J'l

Rewriting this equation
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fJdn f - sia dc%
s i o - s n 2 / 2

To solve this integral, let x = cosa °  and

a = 1 - sin 2K =cos 2K

so dx = - sina0 .da and 1- x 2 = sin 2 a
0 a0

Therefore, the integral can be written in the form

f 2_ d 2 ] 72 Co-,[sa-1

Solution: no = - cos' [Ko- - K5  (D.1O)

or cosa 0 = cosK4 cos(K5 - no ) (D.11)

dI/de and dy/dE Equations. From Eq (D.3)

dl CD csa 00 - CDDBe sinucs 0 i

do 0 sCL.ne-7 cs

From above d -CD Be csan0
d D sin70

dI 0 dI0 dC cosao
By the chain rule d70  d d =tancos-

4sinK
Since a0 = sin -l1  4 then by substitution

[sinl 0178
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tanorj -y JCo ssir-1 [SinK d

This can be rewritten as

rfd' _[ sin 2 K 1-1/2

tango r - - 2 dl°Ocs7 0  1 sin 2 10

I sinl0
sin 0 dI

f[sin2K 4 -I+sin21 0]1/2 0

To solve this integral, let x = cosI and
0

a = 1 - sin 2 K = cos2 K

so dx = - sinI d I  and

- = sin I
0

Thus, the right side of the integral can be written in the

form

S dx -Ix- cs0]

f a2 x 2]12 '= hall [c]= s-I[cosK 4]

and the left side of the integral is

ta t y0  - tanalogrtan[1 + 70] + K6
t fn cosry 4

0

Solution:

cosI0 = cosK cos [tanc" log [tan(! + L) + K6] (D.12)

179

p -



Inner Expansion el Terms

The e1 terms of the outer expansions found in Section V

are as follows:

_- a_ sina0  Cosa Cosa 0
dl Be-sina[+ 0 0 (D.13)
d(- CD Lcos7Osinyo cos 2  sin 2  (

da 1 tana0 dI (D.14)

dC ta nl 0 dC

da 1 CL sinao sina0
or - -- Be sin I -dC D Cos 2 7 0 t a n l 0 1sin2 70 tanl0

sina 0 Cosa 0
Ilcos7 ° sin70 sin2 I 0  0 sn 0 tnI

du 2u Be -C. [ 0 _CL. cos_ C__L." y cos__

dC 0U 7 sin 2 y0 IC D cos70 + CD sinyo Cos2 r0

-2u Be-C- + CLcosa ] (D.15)1 sin °  + DCOSI0

d I tana0. , d I

d*- sin I 0 d+

d(Il C LBsnasina 0  sina0

or u0  .Be -t'InD c05 0  0D~ 2

df2 ta1 21

d -D cos sinI0 sin y0sinI 0

sinsina0 + 71 Csa0 sD
cos0 sinTo sin 2 I0 csy0 sin. 0 sini 0

dq1

d - 0 (D.17)
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To solve the dq /dh equation is a trivial exercise;

solutions to Eqs (D.13) - (D.16) are not required.

dq/d Equation Solution. From Eq (D.17), q1 is simply

q1 =1(7 (D.18)

,
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Appendix E

Example Earth Atmospheric Entry Trajectories

This appendix presents three example Earth atmospheric

entry trajectories to give an indication of what the

dimensionless variables u and h are in relation to more

conventional variables such as Mach, altitude, flight path

angle, and velocity. These trajectories were generated by

AFWAL/FIMG, Air Force Flight Dynamics Laboratory personnel

in the course of flight performance analysis support for

current hypersonic entry vehicle studies. Modern trajectory

analysis computer programs were utilized to produce this

data.

Example Trajectory 1 is the gliding entry trajectory0

for a relatively high lift-to-drag ratio vehicle (about

3.0). Example Trajectory 2 is the gliding entry trajectory

for a low lift-to-drag ratio vehicle (about 0.5). Example

Trajectory 3 is a very steep gliding entry trajectory for

the same low lift-to-drag ratio vehicle. This last

trajectory is somewhat non-realistic due to the extremely

high dynamic pressures (and hence severe heating)

encountered. However, it is included to help give an

indication of the extreme in u and h combinations. Many

current and planned lifting entry vehicles have trajectories

that fall within the ranges of u and h shown in these

examples.
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For the sample trajectories presented in Tables I, II,

and III, the following variables are defined.

y =_Altitude (kft)

-1 Flight path angle (deg)

V Velocity (kft/s)

h Non-dimensional altitude =r/r*

u ESpeed ratio
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Table I Example Trajectory #1

Mach y (kft) y (deg) V (kft/s) h (10- ') u

28.3 300.0 -0.7 25.00 14.34 .942

27.3 252.5 -0.6 24.98 12.07 .939

27.0 270.5 -0.2 23.90 12.93 .860

24.6 240.0 +0.4 23.34 10.64 .819

21.4 212.7 +0.3 22.26 10.16 .744

18.3 200.0 -0.2 19.19 9.56 .553

17.4 201.4 -0.4 18.24 9.62 .499

13.0 176.4 -0.1 14.03 8.43 .295

O 10.9 160.7 -0.3 11.83 7.68 .210

9.1 150.6 0.0 9.75 7.20 .142

7.6 141.2 -0.1 7.99 6.75 .096

5.9 130.8 -0.5 6.13 6.25 .056

4.6 119.7 -0.8 4.70 5.72 .033

3.3 107.7 -0.7 3.29 5.15 .016

2.6 99.2 -2.1 2.54 4.74 .010

1.9 90.0 -4.0 1.87 4.30 .005

1.0 59.4 -11.0 0.97 2.84 .0014
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Table II Example Trajectory #2

Mach y (kft) y (deg) V (kft/s) h (10 - ) u

28.3 287.4 -0.4 25.01 13.73 .942

28.3 262.3 -0.7 25.01 12.53 .941

25.4 227.9 -0.9 24.92 10.89 .933

23.1 189.6 -0.8 24.47 9.06 .898

21.5 171.0 -0.5 23.24 8.17 .810

20.3 175.1 +0.5 21.93 8.37 .721

19.2 164.1 -0.7 20.73 7.84 .644

17.4 138.9 -0.5 18.29 6.64 .501

14.2 129.4 -0.5 14.78 6.18 .327

10.6 107.0 -1.2 10.53 5.11 .166

5.6 81.5 -3.3 5.48 3.90 .045

2.0 49.5 -3.8 1.97 2.40 .0085

1.2 25.7 -18.0 1.24 1.23 .0021
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Table III Example Trajectory #3

Mach y (kft) y (deg) V (kft/s) h (103) u

28.3 300.0 -10.0 25.00 14.34 .914

27.7 256.5 -10.0 25.05 12.26 .916

24.6 212.8 -10.0 25.08 10.17 .916

23.1 169.3 -9.9 25.04 8.09 .912

22.8 92.7 -7.0 22.48 4.43 .743

19.1 72.3 -4.2 18.59 3.46 .513

0 11.1 66.6 43.4 10.76 3.18 .172

7.7 89.2 +9.7 7.55 4.26 .083

6.3 125. +3.8 6.45 5.97 .062

6.0 105. -9.8 5.97 5.02 .052

5.1 71.1 -12.4 4.97 3.40 .035

2.2 47.7 +0.5 2.12 2.28 .007

1.6 50.1 -2.7 1.55 2.19 .0036
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Appendix F

"' Supplemental Figures for Section VI

Supplemental figures for Section IV are presented on

the following pages.
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The assumption of a non-rotating planet, common in most analytical entry
trajectory analyses, has been shown to produce significant errors in some solutions
for the lifting atmospheric entry ofAEarth. This thesis presents an investigation
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In this effort, the three-dimensional equations of motion for lifting atmospheric
,re expanded to include a rotating planet model. A strictly exponential atmosphere,
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rotating Earth equations of motion and for one of the rotating Earth equations of

motion using the method of matched asymptotic expansions.
It is shown that the non-rotating Earth assumption produces incorrect entry

trajectory results for entry orbital inclination angles between 0.5 and 75.0
degrees and vehicle speeds ranging from circular orbital velocities to low

supersonic speeds. However, a variety of realistic trajectory states exist where
some of the non-rotating Earth equations of motion are valid. Three of the non-

rotating equations of motion are found to be valid for the same entry trajectory
states. Other, independent trajectory states exist where a fourth non-rotating

Earth equation of motion is valid. A fifth equation of motion is never valid for
the ranges of orbital inclination angle and speeds investigated.( Trends in the

results of the trajectory states of validity are discussed and n thods to estimate

some of these states are presented.
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